Matches in SemOpenAlex for { <https://semopenalex.org/work/W4387423593> ?p ?o ?g. }
Showing items 1 to 69 of
69
with 100 items per page.
- W4387423593 abstract "Breast cancer has become recently the most common cancer and a major cause of death among women all over the world and especially in developing countries like Iraq. This study aims to predict the type of breast tumor whether benign or malignant through the different models that were built using logistic regression and neural networks which is expected to be helpful for oncologists in diagnosing the type of breast tumor. Four models were set using binary logistic regression and two different types of artificial neural networks namely multilayer perceptron (MLP) and radial basis function (RBF). Both validated and trained models were evaluated using different performance metrics like accuracy or correct classification rate (CCR), receiver operating characteristic (ROC) curves, area under ROC curve (AUC), sensitivity and specificity. Dataset has been downloaded from the machine learning repository of University of California, Irvin (UCI ml repository) that consists of 9 attributes and 699 valid instances. 
 Firstly, some preprocessing was done to cleanse the data, then the models were built using the Logistic Regression method and Artificial Neural Networks and a comparison was done to find out which model will give the highest performance. Each model was validated with a different dataset than that used for developing the models. The analysis of the results showed that the Radial Basis Function neural network model is the best classifier in the prediction of the type of breast tumors since it had recorded the highest performance in terms of correct classification rate (accuracy), sensitivity, specificity, and AUC among all other models." @default.
- W4387423593 created "2023-10-08" @default.
- W4387423593 creator A5000277621 @default.
- W4387423593 creator A5068670730 @default.
- W4387423593 date "2020-07-10" @default.
- W4387423593 modified "2023-10-18" @default.
- W4387423593 title "Investigating the Applicability of Logistic Regression and Artificial Neural Networks in Predicting Breast Cancer" @default.
- W4387423593 doi "https://doi.org/10.29304/jqcm.2020.12.2.697" @default.
- W4387423593 hasPublicationYear "2020" @default.
- W4387423593 type Work @default.
- W4387423593 citedByCount "0" @default.
- W4387423593 crossrefType "journal-article" @default.
- W4387423593 hasAuthorship W4387423593A5000277621 @default.
- W4387423593 hasAuthorship W4387423593A5068670730 @default.
- W4387423593 hasBestOaLocation W43874235931 @default.
- W4387423593 hasConcept C119857082 @default.
- W4387423593 hasConcept C121608353 @default.
- W4387423593 hasConcept C12267149 @default.
- W4387423593 hasConcept C124101348 @default.
- W4387423593 hasConcept C126322002 @default.
- W4387423593 hasConcept C151956035 @default.
- W4387423593 hasConcept C152877465 @default.
- W4387423593 hasConcept C154945302 @default.
- W4387423593 hasConcept C179717631 @default.
- W4387423593 hasConcept C34736171 @default.
- W4387423593 hasConcept C41008148 @default.
- W4387423593 hasConcept C50644808 @default.
- W4387423593 hasConcept C530470458 @default.
- W4387423593 hasConcept C58471807 @default.
- W4387423593 hasConcept C60908668 @default.
- W4387423593 hasConcept C66905080 @default.
- W4387423593 hasConcept C71924100 @default.
- W4387423593 hasConcept C98856871 @default.
- W4387423593 hasConceptScore W4387423593C119857082 @default.
- W4387423593 hasConceptScore W4387423593C121608353 @default.
- W4387423593 hasConceptScore W4387423593C12267149 @default.
- W4387423593 hasConceptScore W4387423593C124101348 @default.
- W4387423593 hasConceptScore W4387423593C126322002 @default.
- W4387423593 hasConceptScore W4387423593C151956035 @default.
- W4387423593 hasConceptScore W4387423593C152877465 @default.
- W4387423593 hasConceptScore W4387423593C154945302 @default.
- W4387423593 hasConceptScore W4387423593C179717631 @default.
- W4387423593 hasConceptScore W4387423593C34736171 @default.
- W4387423593 hasConceptScore W4387423593C41008148 @default.
- W4387423593 hasConceptScore W4387423593C50644808 @default.
- W4387423593 hasConceptScore W4387423593C530470458 @default.
- W4387423593 hasConceptScore W4387423593C58471807 @default.
- W4387423593 hasConceptScore W4387423593C60908668 @default.
- W4387423593 hasConceptScore W4387423593C66905080 @default.
- W4387423593 hasConceptScore W4387423593C71924100 @default.
- W4387423593 hasConceptScore W4387423593C98856871 @default.
- W4387423593 hasIssue "2" @default.
- W4387423593 hasLocation W43874235931 @default.
- W4387423593 hasOpenAccess W4387423593 @default.
- W4387423593 hasPrimaryLocation W43874235931 @default.
- W4387423593 hasRelatedWork W1598419248 @default.
- W4387423593 hasRelatedWork W2019891950 @default.
- W4387423593 hasRelatedWork W2027976520 @default.
- W4387423593 hasRelatedWork W2038474459 @default.
- W4387423593 hasRelatedWork W2076543106 @default.
- W4387423593 hasRelatedWork W2085842814 @default.
- W4387423593 hasRelatedWork W2096715552 @default.
- W4387423593 hasRelatedWork W2502272432 @default.
- W4387423593 hasRelatedWork W2523437662 @default.
- W4387423593 hasRelatedWork W4387048144 @default.
- W4387423593 hasVolume "12" @default.
- W4387423593 isParatext "false" @default.
- W4387423593 isRetracted "false" @default.
- W4387423593 workType "article" @default.