Matches in SemOpenAlex for { <https://semopenalex.org/work/W4387423810> ?p ?o ?g. }
- W4387423810 endingPage "113799" @default.
- W4387423810 startingPage "113799" @default.
- W4387423810 abstract "The advent of temporally dense radar data such as the Sentinel-1 SAR have opened the door for rapid forest disturbance detection in the humid tropics. Tropical dry forest disturbance detection, however, were challenged by seasonality and more open canopy characteristics. In this manuscript, we proposed a Sentinel-1 SAR and deep learning based rapid forest disturbance detection approach for tropical dry forests. We demonstrated a weakly supervised method for reference label harvesting based on medium resolution globally available forest and forest disturbance maps. We trained a deep neural network model to derive forest and forest disturbance probabilities from Sentinel-1 images in the first step. We then implemented a probabilistic disturbance detection and refinement method to map forest disturbances in near real-time in two test regions in Paraguay and Mozambique. We mapped new forest disturbances in an emulated near real-time scenario for 2020 and 2021 and evaluated the spatial accuracy of the disturbance alerts by generating area adjusted precision, recall and F-1 score. We also evaluated the improvement in timeliness of disturbance detection by estimating mean time difference of disturbance events detection with that of Landsat-based GLAD alerts. The generated alerts in Paraguay and Mozambique achieved a precision, recall and F-1 score of 0.99, 0.61, 0.75 and 0.97, 0.51, 0.66, respectively. The proposed method detected disturbances with a mean of 21 days (± 18 days) earlier in Paraguay and 18 days (± 18 days) earlier in Mozambique than the Landsat-based GLAD alerts. These results demonstrated the efficacy of the proposed method and its viability to be used in an operational setting to generate large area rapid near real-time disturbance alerts in the dry tropics." @default.
- W4387423810 created "2023-10-08" @default.
- W4387423810 creator A5004918175 @default.
- W4387423810 creator A5022899478 @default.
- W4387423810 creator A5051124265 @default.
- W4387423810 date "2023-12-01" @default.
- W4387423810 modified "2023-10-18" @default.
- W4387423810 title "Deep learning and automatic reference label harvesting for Sentinel-1 SAR-based rapid tropical dry forest disturbance mapping" @default.
- W4387423810 cites W1981213426 @default.
- W4387423810 cites W1984670836 @default.
- W4387423810 cites W1989898472 @default.
- W4387423810 cites W1991837234 @default.
- W4387423810 cites W2001076865 @default.
- W4387423810 cites W2002291348 @default.
- W4387423810 cites W2009823861 @default.
- W4387423810 cites W2011500029 @default.
- W4387423810 cites W2030864384 @default.
- W4387423810 cites W2057771708 @default.
- W4387423810 cites W2061692811 @default.
- W4387423810 cites W2078118711 @default.
- W4387423810 cites W2091720886 @default.
- W4387423810 cites W2112206513 @default.
- W4387423810 cites W2133515615 @default.
- W4387423810 cites W2146517210 @default.
- W4387423810 cites W2159866370 @default.
- W4387423810 cites W2161336494 @default.
- W4387423810 cites W2162921856 @default.
- W4387423810 cites W2170365318 @default.
- W4387423810 cites W2181171301 @default.
- W4387423810 cites W2247062920 @default.
- W4387423810 cites W2288373547 @default.
- W4387423810 cites W2588968826 @default.
- W4387423810 cites W2605932719 @default.
- W4387423810 cites W2621021710 @default.
- W4387423810 cites W2725897987 @default.
- W4387423810 cites W2746791238 @default.
- W4387423810 cites W2766826930 @default.
- W4387423810 cites W2822665421 @default.
- W4387423810 cites W2886438884 @default.
- W4387423810 cites W2888697548 @default.
- W4387423810 cites W2903282641 @default.
- W4387423810 cites W2961745803 @default.
- W4387423810 cites W2963587968 @default.
- W4387423810 cites W2987399229 @default.
- W4387423810 cites W2991591719 @default.
- W4387423810 cites W3013341479 @default.
- W4387423810 cites W3034843493 @default.
- W4387423810 cites W3092625606 @default.
- W4387423810 cites W3122099883 @default.
- W4387423810 cites W3163231391 @default.
- W4387423810 cites W3194858231 @default.
- W4387423810 cites W3216431717 @default.
- W4387423810 cites W4210493552 @default.
- W4387423810 cites W4211095452 @default.
- W4387423810 cites W4220785317 @default.
- W4387423810 cites W4289204844 @default.
- W4387423810 cites W4313570445 @default.
- W4387423810 doi "https://doi.org/10.1016/j.rse.2023.113799" @default.
- W4387423810 hasPublicationYear "2023" @default.
- W4387423810 type Work @default.
- W4387423810 citedByCount "0" @default.
- W4387423810 crossrefType "journal-article" @default.
- W4387423810 hasAuthorship W4387423810A5004918175 @default.
- W4387423810 hasAuthorship W4387423810A5022899478 @default.
- W4387423810 hasAuthorship W4387423810A5051124265 @default.
- W4387423810 hasBestOaLocation W43874238101 @default.
- W4387423810 hasConcept C101000010 @default.
- W4387423810 hasConcept C108216600 @default.
- W4387423810 hasConcept C125620115 @default.
- W4387423810 hasConcept C127313418 @default.
- W4387423810 hasConcept C151730666 @default.
- W4387423810 hasConcept C154945302 @default.
- W4387423810 hasConcept C166957645 @default.
- W4387423810 hasConcept C18903297 @default.
- W4387423810 hasConcept C205649164 @default.
- W4387423810 hasConcept C2776285232 @default.
- W4387423810 hasConcept C2777601987 @default.
- W4387423810 hasConcept C39432304 @default.
- W4387423810 hasConcept C41008148 @default.
- W4387423810 hasConcept C54286561 @default.
- W4387423810 hasConcept C62649853 @default.
- W4387423810 hasConcept C81669768 @default.
- W4387423810 hasConcept C86803240 @default.
- W4387423810 hasConcept C97137747 @default.
- W4387423810 hasConceptScore W4387423810C101000010 @default.
- W4387423810 hasConceptScore W4387423810C108216600 @default.
- W4387423810 hasConceptScore W4387423810C125620115 @default.
- W4387423810 hasConceptScore W4387423810C127313418 @default.
- W4387423810 hasConceptScore W4387423810C151730666 @default.
- W4387423810 hasConceptScore W4387423810C154945302 @default.
- W4387423810 hasConceptScore W4387423810C166957645 @default.
- W4387423810 hasConceptScore W4387423810C18903297 @default.
- W4387423810 hasConceptScore W4387423810C205649164 @default.
- W4387423810 hasConceptScore W4387423810C2776285232 @default.
- W4387423810 hasConceptScore W4387423810C2777601987 @default.
- W4387423810 hasConceptScore W4387423810C39432304 @default.
- W4387423810 hasConceptScore W4387423810C41008148 @default.
- W4387423810 hasConceptScore W4387423810C54286561 @default.