Matches in SemOpenAlex for { <https://semopenalex.org/work/W4387425101> ?p ?o ?g. }
Showing items 1 to 90 of
90
with 100 items per page.
- W4387425101 endingPage "240" @default.
- W4387425101 startingPage "227" @default.
- W4387425101 abstract "Nanobodies (Nb) are monomeric heavy-chain fragments derived from heavy-chain only antibodies naturally found in Camelids and Sharks. Their considerably small size ( $$sim $$ 3–4 nm; 13 kDa) and favorable biophysical properties make them attractive targets for recombinant production. Furthermore, their unique ability to bind selectively to specific antigens, such as toxins, chemicals, bacteria, and viruses, makes them powerful tools in cell biology, structural biology, medical diagnostics, and future therapeutic agents in treating cancer and other serious illnesses. However, a critical challenge in nanobodies production is the unavailability of nanobodies for a majority of antigens. Although some computational methods have been proposed to screen potential nanobodies for given target antigens, their practical application is highly restricted due to their reliance on 3D structures. Moreover, predicting nanobody-antigen interactions (binding) is a time-consuming and labor-intensive task. This study aims to develop a machine-learning method to predict Nanobody-Antigen binding solely based on the sequence data. We curated a comprehensive dataset of Nanobody-Antigen binding and non-binding data and devised an embedding method based on gapped k-mers to predict binding based only on sequences of nanobody and antigen. Our approach achieves up to $$90%$$ accuracy in binding prediction and is significantly more efficient compared to the widely-used computational docking technique." @default.
- W4387425101 created "2023-10-08" @default.
- W4387425101 creator A5005244163 @default.
- W4387425101 creator A5008268308 @default.
- W4387425101 creator A5011300632 @default.
- W4387425101 creator A5019947731 @default.
- W4387425101 creator A5026228482 @default.
- W4387425101 creator A5037142042 @default.
- W4387425101 creator A5064858842 @default.
- W4387425101 date "2023-01-01" @default.
- W4387425101 modified "2023-10-18" @default.
- W4387425101 title "Sequence-Based Nanobody-Antigen Binding Prediction" @default.
- W4387425101 cites W1912933662 @default.
- W4387425101 cites W1975304761 @default.
- W4387425101 cites W1991653374 @default.
- W4387425101 cites W1997875463 @default.
- W4387425101 cites W2057021995 @default.
- W4387425101 cites W2071333804 @default.
- W4387425101 cites W2074655761 @default.
- W4387425101 cites W2081556853 @default.
- W4387425101 cites W2101327971 @default.
- W4387425101 cites W2117218524 @default.
- W4387425101 cites W2130479394 @default.
- W4387425101 cites W2144560237 @default.
- W4387425101 cites W2169610187 @default.
- W4387425101 cites W2560305285 @default.
- W4387425101 cites W2793899290 @default.
- W4387425101 cites W2883609523 @default.
- W4387425101 cites W2898364362 @default.
- W4387425101 cites W3163258067 @default.
- W4387425101 cites W3198971816 @default.
- W4387425101 cites W3204793343 @default.
- W4387425101 cites W3209435597 @default.
- W4387425101 cites W4220693339 @default.
- W4387425101 cites W4291165742 @default.
- W4387425101 cites W4307511629 @default.
- W4387425101 cites W4321458784 @default.
- W4387425101 cites W4367366153 @default.
- W4387425101 cites W4378471523 @default.
- W4387425101 cites W4378516410 @default.
- W4387425101 doi "https://doi.org/10.1007/978-981-99-7074-2_18" @default.
- W4387425101 hasPublicationYear "2023" @default.
- W4387425101 type Work @default.
- W4387425101 citedByCount "0" @default.
- W4387425101 crossrefType "book-chapter" @default.
- W4387425101 hasAuthorship W4387425101A5005244163 @default.
- W4387425101 hasAuthorship W4387425101A5008268308 @default.
- W4387425101 hasAuthorship W4387425101A5011300632 @default.
- W4387425101 hasAuthorship W4387425101A5019947731 @default.
- W4387425101 hasAuthorship W4387425101A5026228482 @default.
- W4387425101 hasAuthorship W4387425101A5037142042 @default.
- W4387425101 hasAuthorship W4387425101A5064858842 @default.
- W4387425101 hasConcept C104317684 @default.
- W4387425101 hasConcept C147483822 @default.
- W4387425101 hasConcept C159110408 @default.
- W4387425101 hasConcept C40767141 @default.
- W4387425101 hasConcept C41008148 @default.
- W4387425101 hasConcept C41685203 @default.
- W4387425101 hasConcept C54355233 @default.
- W4387425101 hasConcept C70721500 @default.
- W4387425101 hasConcept C71924100 @default.
- W4387425101 hasConcept C86803240 @default.
- W4387425101 hasConceptScore W4387425101C104317684 @default.
- W4387425101 hasConceptScore W4387425101C147483822 @default.
- W4387425101 hasConceptScore W4387425101C159110408 @default.
- W4387425101 hasConceptScore W4387425101C40767141 @default.
- W4387425101 hasConceptScore W4387425101C41008148 @default.
- W4387425101 hasConceptScore W4387425101C41685203 @default.
- W4387425101 hasConceptScore W4387425101C54355233 @default.
- W4387425101 hasConceptScore W4387425101C70721500 @default.
- W4387425101 hasConceptScore W4387425101C71924100 @default.
- W4387425101 hasConceptScore W4387425101C86803240 @default.
- W4387425101 hasLocation W43874251011 @default.
- W4387425101 hasOpenAccess W4387425101 @default.
- W4387425101 hasPrimaryLocation W43874251011 @default.
- W4387425101 hasRelatedWork W1641042124 @default.
- W4387425101 hasRelatedWork W1990804418 @default.
- W4387425101 hasRelatedWork W1993764875 @default.
- W4387425101 hasRelatedWork W2013243191 @default.
- W4387425101 hasRelatedWork W2051339581 @default.
- W4387425101 hasRelatedWork W2082860237 @default.
- W4387425101 hasRelatedWork W2117258802 @default.
- W4387425101 hasRelatedWork W2130076355 @default.
- W4387425101 hasRelatedWork W2151865869 @default.
- W4387425101 hasRelatedWork W4234157524 @default.
- W4387425101 isParatext "false" @default.
- W4387425101 isRetracted "false" @default.
- W4387425101 workType "book-chapter" @default.