Matches in SemOpenAlex for { <https://semopenalex.org/work/W4387426423> ?p ?o ?g. }
- W4387426423 abstract "Breast cancer is a complex and heterogeneous disease with distinct subtypes and molecular profiles corresponding to different clinical outcomes. Mouse models of breast cancer are widely used, but their relevance in capturing the heterogeneity of human disease is unclear. Previous studies have shown the heterogeneity at the gene expression level for the MMTV-Myc model, but have only speculated on the underlying genetics.Tumors from the microacinar, squamous, and EMT histological subtypes of the MMTV-Myc mouse model of breast cancer underwent whole genome sequencing. The genomic data obtained were then integrated with previously obtained matched sample gene expression data and extended to additional samples of each histological subtype, totaling 42 gene expression samples. High correlation was observed between genetic copy number events and resulting gene expression by both Spearman's rank correlation coefficient and the Kendall rank correlation coefficient. These same genetic events are conserved in humans and are indicative of poor overall survival by Kaplan-Meier analysis. A supervised machine learning algorithm trained on METABRIC gene expression data was used to predict the analogous human breast cancer intrinsic subtype from mouse gene expression data.Herein, we examine three common histological subtypes of the MMTV-Myc model through whole genome sequencing and have integrated these results with gene expression data. Significantly, key genomic alterations driving cell signaling pathways were well conserved within histological subtypes. Genomic changes included frequent, co-occurring mutations in KIT and RARA in the microacinar histological subtype as well as SCRIB mutations in the EMT subtype. EMT tumors additionally displayed strong KRAS activation signatures downstream of genetic activating events primarily ascribed to KRAS activating mutations, but also FGFR2 amplification. Analogous genetic events in human breast cancer showed stark decreases in overall survival. In further analyzing transcriptional heterogeneity of the MMTV-Myc model, we report a supervised machine learning model that classifies MMTV-Myc histological subtypes and other mouse models as being representative of different human intrinsic breast cancer subtypes.We conclude the well-established MMTV-Myc mouse model presents further opportunities for investigation of human breast cancer heterogeneity." @default.
- W4387426423 created "2023-10-08" @default.
- W4387426423 creator A5008636889 @default.
- W4387426423 creator A5082813095 @default.
- W4387426423 creator A5087113189 @default.
- W4387426423 creator A5090347439 @default.
- W4387426423 date "2023-10-07" @default.
- W4387426423 modified "2023-10-11" @default.
- W4387426423 title "Integrative multi-omic sequencing reveals the MMTV-Myc mouse model mimics human breast cancer heterogeneity" @default.
- W4387426423 cites W104658997 @default.
- W4387426423 cites W1246749024 @default.
- W4387426423 cites W1500013333 @default.
- W4387426423 cites W1843990841 @default.
- W4387426423 cites W1971777358 @default.
- W4387426423 cites W1977859620 @default.
- W4387426423 cites W1978158433 @default.
- W4387426423 cites W1990367849 @default.
- W4387426423 cites W2005203924 @default.
- W4387426423 cites W2005501593 @default.
- W4387426423 cites W2005895632 @default.
- W4387426423 cites W2007080030 @default.
- W4387426423 cites W2009569524 @default.
- W4387426423 cites W2016081187 @default.
- W4387426423 cites W2021536610 @default.
- W4387426423 cites W2026433475 @default.
- W4387426423 cites W2040935952 @default.
- W4387426423 cites W2044695669 @default.
- W4387426423 cites W2045244782 @default.
- W4387426423 cites W2054195724 @default.
- W4387426423 cites W2064402415 @default.
- W4387426423 cites W2086609648 @default.
- W4387426423 cites W2100283268 @default.
- W4387426423 cites W2106292881 @default.
- W4387426423 cites W2106578986 @default.
- W4387426423 cites W2107665951 @default.
- W4387426423 cites W2107823127 @default.
- W4387426423 cites W2108234281 @default.
- W4387426423 cites W2110828128 @default.
- W4387426423 cites W2111350087 @default.
- W4387426423 cites W2111449140 @default.
- W4387426423 cites W2111814753 @default.
- W4387426423 cites W2118528246 @default.
- W4387426423 cites W2119180969 @default.
- W4387426423 cites W2123734813 @default.
- W4387426423 cites W2125785650 @default.
- W4387426423 cites W2127322768 @default.
- W4387426423 cites W2129136620 @default.
- W4387426423 cites W2131271579 @default.
- W4387426423 cites W2132285133 @default.
- W4387426423 cites W2132619562 @default.
- W4387426423 cites W2141647078 @default.
- W4387426423 cites W2145344972 @default.
- W4387426423 cites W2146005104 @default.
- W4387426423 cites W2149908785 @default.
- W4387426423 cites W2150633526 @default.
- W4387426423 cites W2155943701 @default.
- W4387426423 cites W2158485828 @default.
- W4387426423 cites W2158804744 @default.
- W4387426423 cites W2160938378 @default.
- W4387426423 cites W2161577298 @default.
- W4387426423 cites W2272125952 @default.
- W4387426423 cites W2276335691 @default.
- W4387426423 cites W2337209831 @default.
- W4387426423 cites W2375577403 @default.
- W4387426423 cites W2472811390 @default.
- W4387426423 cites W2602533179 @default.
- W4387426423 cites W2767034994 @default.
- W4387426423 cites W2888561138 @default.
- W4387426423 cites W2897040690 @default.
- W4387426423 cites W2920863604 @default.
- W4387426423 cites W2963788253 @default.
- W4387426423 cites W2964233382 @default.
- W4387426423 cites W2965972967 @default.
- W4387426423 cites W2985789142 @default.
- W4387426423 cites W2994743171 @default.
- W4387426423 cites W2999309192 @default.
- W4387426423 cites W3004480399 @default.
- W4387426423 cites W3004584205 @default.
- W4387426423 cites W3015420921 @default.
- W4387426423 cites W3025790441 @default.
- W4387426423 cites W3031032700 @default.
- W4387426423 cites W3033869790 @default.
- W4387426423 cites W3162293114 @default.
- W4387426423 cites W3172081492 @default.
- W4387426423 cites W3182990884 @default.
- W4387426423 cites W4205621591 @default.
- W4387426423 cites W4281650778 @default.
- W4387426423 cites W4281675752 @default.
- W4387426423 cites W4294295577 @default.
- W4387426423 doi "https://doi.org/10.1186/s13058-023-01723-3" @default.
- W4387426423 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/37805590" @default.
- W4387426423 hasPublicationYear "2023" @default.
- W4387426423 type Work @default.
- W4387426423 citedByCount "0" @default.
- W4387426423 crossrefType "journal-article" @default.
- W4387426423 hasAuthorship W4387426423A5008636889 @default.
- W4387426423 hasAuthorship W4387426423A5082813095 @default.
- W4387426423 hasAuthorship W4387426423A5087113189 @default.
- W4387426423 hasAuthorship W4387426423A5090347439 @default.
- W4387426423 hasBestOaLocation W43874264231 @default.