Matches in SemOpenAlex for { <https://semopenalex.org/work/W4387431552> ?p ?o ?g. }
- W4387431552 endingPage "103544" @default.
- W4387431552 startingPage "103544" @default.
- W4387431552 abstract "The behavior of concrete gravity dams under seismic loading is a complex engineering problem dependent on a wide range of variables. Probabilistic methods can be used to evaluate the capacity of an individual or a portfolio of dams to withstand seismic events. However, due to the high number of re-evaluations required by such methods, simplified models that may not fully capture the complexity of the problem are frequently adopted in the evaluations. For a portfolio of dams that requires geometric uncertainty to be included in the list of controlled variables, the number of re-evaluations increases even further. This is a common engineering problem, where the cost-performance trade-off must be evaluated for every project. To address this issue, this study proposes a machine learning-based transformation function that improves the results obtained with a simplified method by converting low-fidelity data into high-fidelity data. The proposed procedure is applied to analyze the seismic response of a dam-reservoir-foundation system considering three approaches for geometric uncertainty, with increasing complexity. The final function takes as input low-fidelity observations, as well as geometric, material and seismic parameters, and outputs improved observations, with accuracy levels comparable to those obtained with a high-fidelity model but at a much lower cost. The sliding factor of safety resulting from a pseudostatic analysis is taken as the low-fidelity observation, and the sliding displacement from a nonlinear finite element analysis is selected as the high-fidelity observation. The resulting transformation function is then used to generate fragility curves for a well-documented case study dam, and the results using the proposed methodology and from a traditional fragility analysis are compared. It is observed that the proposed methodology to generate transformation functions is capable of correlating methods with radically different hypotheses, precision levels and even different outputs." @default.
- W4387431552 created "2023-10-08" @default.
- W4387431552 creator A5004537460 @default.
- W4387431552 creator A5005540128 @default.
- W4387431552 creator A5019216118 @default.
- W4387431552 date "2023-10-01" @default.
- W4387431552 modified "2023-10-18" @default.
- W4387431552 title "Polynomial response surface-based transformation function for the performance improvement of low-fidelity models for concrete gravity dams" @default.
- W4387431552 cites W1599167545 @default.
- W4387431552 cites W1879397359 @default.
- W4387431552 cites W1968022934 @default.
- W4387431552 cites W1975715097 @default.
- W4387431552 cites W1985161448 @default.
- W4387431552 cites W1995098081 @default.
- W4387431552 cites W1995445327 @default.
- W4387431552 cites W1995806857 @default.
- W4387431552 cites W2004949344 @default.
- W4387431552 cites W2017337590 @default.
- W4387431552 cites W2020299698 @default.
- W4387431552 cites W2020909870 @default.
- W4387431552 cites W2057198359 @default.
- W4387431552 cites W2060697120 @default.
- W4387431552 cites W2070238662 @default.
- W4387431552 cites W2103312173 @default.
- W4387431552 cites W2111684148 @default.
- W4387431552 cites W2113050263 @default.
- W4387431552 cites W2160925734 @default.
- W4387431552 cites W2210095280 @default.
- W4387431552 cites W2215260246 @default.
- W4387431552 cites W2269455269 @default.
- W4387431552 cites W2283027053 @default.
- W4387431552 cites W2337301685 @default.
- W4387431552 cites W2339295179 @default.
- W4387431552 cites W2346379410 @default.
- W4387431552 cites W2506743715 @default.
- W4387431552 cites W2561978594 @default.
- W4387431552 cites W2565897032 @default.
- W4387431552 cites W2600867386 @default.
- W4387431552 cites W2762734384 @default.
- W4387431552 cites W2767681036 @default.
- W4387431552 cites W2782127143 @default.
- W4387431552 cites W2794594807 @default.
- W4387431552 cites W2807389035 @default.
- W4387431552 cites W2892172416 @default.
- W4387431552 cites W2893612546 @default.
- W4387431552 cites W2908594125 @default.
- W4387431552 cites W2978166610 @default.
- W4387431552 cites W2978784493 @default.
- W4387431552 cites W3004307160 @default.
- W4387431552 cites W3018367452 @default.
- W4387431552 cites W3149471975 @default.
- W4387431552 cites W3169220139 @default.
- W4387431552 cites W4280575520 @default.
- W4387431552 cites W4366766954 @default.
- W4387431552 cites W4379191915 @default.
- W4387431552 doi "https://doi.org/10.1016/j.probengmech.2023.103544" @default.
- W4387431552 hasPublicationYear "2023" @default.
- W4387431552 type Work @default.
- W4387431552 citedByCount "0" @default.
- W4387431552 crossrefType "journal-article" @default.
- W4387431552 hasAuthorship W4387431552A5004537460 @default.
- W4387431552 hasAuthorship W4387431552A5005540128 @default.
- W4387431552 hasAuthorship W4387431552A5019216118 @default.
- W4387431552 hasConcept C104317684 @default.
- W4387431552 hasConcept C11413529 @default.
- W4387431552 hasConcept C121332964 @default.
- W4387431552 hasConcept C123060433 @default.
- W4387431552 hasConcept C126255220 @default.
- W4387431552 hasConcept C127413603 @default.
- W4387431552 hasConcept C134306372 @default.
- W4387431552 hasConcept C135628077 @default.
- W4387431552 hasConcept C14036430 @default.
- W4387431552 hasConcept C146978453 @default.
- W4387431552 hasConcept C154945302 @default.
- W4387431552 hasConcept C158622935 @default.
- W4387431552 hasConcept C185592680 @default.
- W4387431552 hasConcept C204241405 @default.
- W4387431552 hasConcept C204323151 @default.
- W4387431552 hasConcept C2776459999 @default.
- W4387431552 hasConcept C33923547 @default.
- W4387431552 hasConcept C41008148 @default.
- W4387431552 hasConcept C49937458 @default.
- W4387431552 hasConcept C55493867 @default.
- W4387431552 hasConcept C62520636 @default.
- W4387431552 hasConcept C66938386 @default.
- W4387431552 hasConcept C76155785 @default.
- W4387431552 hasConcept C78458016 @default.
- W4387431552 hasConcept C86803240 @default.
- W4387431552 hasConcept C90119067 @default.
- W4387431552 hasConceptScore W4387431552C104317684 @default.
- W4387431552 hasConceptScore W4387431552C11413529 @default.
- W4387431552 hasConceptScore W4387431552C121332964 @default.
- W4387431552 hasConceptScore W4387431552C123060433 @default.
- W4387431552 hasConceptScore W4387431552C126255220 @default.
- W4387431552 hasConceptScore W4387431552C127413603 @default.
- W4387431552 hasConceptScore W4387431552C134306372 @default.
- W4387431552 hasConceptScore W4387431552C135628077 @default.
- W4387431552 hasConceptScore W4387431552C14036430 @default.