Matches in SemOpenAlex for { <https://semopenalex.org/work/W4387432947> ?p ?o ?g. }
Showing items 1 to 75 of
75
with 100 items per page.
- W4387432947 abstract "Ensuring quality human-AI interaction (HAII) in safety-critical industries is essential. Failure to do so can lead to catastrophic and deadly consequences. Despite this urgency, what little research there is on HAII is fragmented and inconsistent. We present here a survey of that literature and recommendations for research best practices that will improve the field. We divided our investigation into the following research areas: (1) terms used to describe HAII, (2) primary roles of AI-enabled systems, (3) factors that influence HAII, and (4) how HAII is measured. Additionally, we described the capabilities and maturity of the AI-enabled systems used in safety-critical industries discussed in these articles. We found that no single term is used across the literature to describe HAII and some terms have multiple meanings. According to our literature, five factors influence HAII: user characteristics and background (e.g., user personality, perceptions), AI interface and features (e.g., interactive UI design), AI output (e.g., accuracy, actionable recommendations), explainability and interpretability (e.g., level of detail, user understanding), and usage of AI (e.g., heterogeneity of environments and user needs). HAII is most commonly measured with user-related subjective metrics (e.g., user perception, trust, and attitudes), and AI-assisted decision-making is the most common primary role of AI-enabled systems. Based on this review, we conclude that there are substantial research gaps in HAII. Researchers and developers need to codify HAII terminology, involve users throughout the AI lifecycle (especially during development), and tailor HAII in safety-critical industries to the users and environments." @default.
- W4387432947 created "2023-10-09" @default.
- W4387432947 creator A5001173171 @default.
- W4387432947 creator A5010655329 @default.
- W4387432947 creator A5029845373 @default.
- W4387432947 creator A5045156755 @default.
- W4387432947 date "2023-10-05" @default.
- W4387432947 modified "2023-10-09" @default.
- W4387432947 title "Unpacking Human-AI Interaction in Safety-Critical Industries: A Systematic Literature Review" @default.
- W4387432947 doi "https://doi.org/10.48550/arxiv.2310.03392" @default.
- W4387432947 hasPublicationYear "2023" @default.
- W4387432947 type Work @default.
- W4387432947 citedByCount "0" @default.
- W4387432947 crossrefType "posted-content" @default.
- W4387432947 hasAuthorship W4387432947A5001173171 @default.
- W4387432947 hasAuthorship W4387432947A5010655329 @default.
- W4387432947 hasAuthorship W4387432947A5029845373 @default.
- W4387432947 hasAuthorship W4387432947A5045156755 @default.
- W4387432947 hasBestOaLocation W43874329471 @default.
- W4387432947 hasConcept C107457646 @default.
- W4387432947 hasConcept C111472728 @default.
- W4387432947 hasConcept C111919701 @default.
- W4387432947 hasConcept C138885662 @default.
- W4387432947 hasConcept C154945302 @default.
- W4387432947 hasConcept C15744967 @default.
- W4387432947 hasConcept C169760540 @default.
- W4387432947 hasConcept C202444582 @default.
- W4387432947 hasConcept C2522767166 @default.
- W4387432947 hasConcept C26760741 @default.
- W4387432947 hasConcept C2777256151 @default.
- W4387432947 hasConcept C2779530757 @default.
- W4387432947 hasConcept C2781067378 @default.
- W4387432947 hasConcept C33923547 @default.
- W4387432947 hasConcept C41008148 @default.
- W4387432947 hasConcept C41895202 @default.
- W4387432947 hasConcept C547195049 @default.
- W4387432947 hasConcept C56739046 @default.
- W4387432947 hasConcept C89505385 @default.
- W4387432947 hasConcept C9652623 @default.
- W4387432947 hasConceptScore W4387432947C107457646 @default.
- W4387432947 hasConceptScore W4387432947C111472728 @default.
- W4387432947 hasConceptScore W4387432947C111919701 @default.
- W4387432947 hasConceptScore W4387432947C138885662 @default.
- W4387432947 hasConceptScore W4387432947C154945302 @default.
- W4387432947 hasConceptScore W4387432947C15744967 @default.
- W4387432947 hasConceptScore W4387432947C169760540 @default.
- W4387432947 hasConceptScore W4387432947C202444582 @default.
- W4387432947 hasConceptScore W4387432947C2522767166 @default.
- W4387432947 hasConceptScore W4387432947C26760741 @default.
- W4387432947 hasConceptScore W4387432947C2777256151 @default.
- W4387432947 hasConceptScore W4387432947C2779530757 @default.
- W4387432947 hasConceptScore W4387432947C2781067378 @default.
- W4387432947 hasConceptScore W4387432947C33923547 @default.
- W4387432947 hasConceptScore W4387432947C41008148 @default.
- W4387432947 hasConceptScore W4387432947C41895202 @default.
- W4387432947 hasConceptScore W4387432947C547195049 @default.
- W4387432947 hasConceptScore W4387432947C56739046 @default.
- W4387432947 hasConceptScore W4387432947C89505385 @default.
- W4387432947 hasConceptScore W4387432947C9652623 @default.
- W4387432947 hasLocation W43874329471 @default.
- W4387432947 hasOpenAccess W4387432947 @default.
- W4387432947 hasPrimaryLocation W43874329471 @default.
- W4387432947 hasRelatedWork W1186135329 @default.
- W4387432947 hasRelatedWork W1608278265 @default.
- W4387432947 hasRelatedWork W2048990642 @default.
- W4387432947 hasRelatedWork W2090588614 @default.
- W4387432947 hasRelatedWork W2097677915 @default.
- W4387432947 hasRelatedWork W2140011328 @default.
- W4387432947 hasRelatedWork W2154641962 @default.
- W4387432947 hasRelatedWork W2186453640 @default.
- W4387432947 hasRelatedWork W3041171771 @default.
- W4387432947 hasRelatedWork W5724778 @default.
- W4387432947 isParatext "false" @default.
- W4387432947 isRetracted "false" @default.
- W4387432947 workType "article" @default.