Matches in SemOpenAlex for { <https://semopenalex.org/work/W4387435796> ?p ?o ?g. }
- W4387435796 endingPage "4883" @default.
- W4387435796 startingPage "4883" @default.
- W4387435796 abstract "Soil liquefaction often occurs as a secondary hazard during earthquakes and can lead to significant structural and infrastructure damage. Liquefaction is most often documented through field reconnaissance and recorded as point locations. Complete liquefaction inventories across the impacted area are rare but valuable for developing empirical liquefaction prediction models. Remote sensing analysis can be used to rapidly produce the full spatial extent of liquefaction ejecta after an event to inform and supplement field investigations. Visually labeling liquefaction ejecta from remotely sensed imagery is time-consuming and prone to human error and inconsistency. This study uses a partially labeled liquefaction inventory created from visual annotations by experts and proposes a pixel-based approach to detecting unlabeled liquefaction using advanced machine learning and image processing techniques, and to generating an augmented inventory of liquefaction ejecta with high spatial completeness. The proposed methodology is applied to aerial imagery taken from the 2011 Christchurch earthquake and considers the available partial liquefaction labels as high-certainty liquefaction features. This study consists of two specific comparative analyses. (1) To tackle the limited availability of labeled data and their spatial incompleteness, a semi-supervised self-training classification via Linear Discriminant Analysis is presented, and the performance of the semi-supervised learning approach is compared with supervised learning classification. (2) A post-event aerial image with RGB (red-green-blue) channels is used to extract color transformation bands, statistical indices, texture components, and dimensionality reduction outputs, and performances of the classification model with different combinations of selected features from these four groups are compared. Building footprints are also used as the only non-imagery geospatial information to improve classification accuracy by masking out building roofs from the classification process. To prepare the multi-class labeled data, regions of interest (ROIs) were drawn to collect samples of seven land cover and land use classes. The labeled samples of liquefaction were also clustered into two groups (dark and light) using the Fuzzy C-Means clustering algorithm to split the liquefaction pixels into two classes. A comparison of the generated maps with fully and manually labeled liquefaction data showed that the proposed semi-supervised method performs best when selected high-ranked features of the two groups of statistical indices (gradient weight and sum of the band squares) and dimensionality reduction outputs (first and second principal components) are used. It also outperforms supervised learning and can better augment the liquefaction labels across the image in terms of spatial completeness." @default.
- W4387435796 created "2023-10-09" @default.
- W4387435796 creator A5000667393 @default.
- W4387435796 creator A5049772278 @default.
- W4387435796 creator A5055218636 @default.
- W4387435796 creator A5056924374 @default.
- W4387435796 creator A5062070289 @default.
- W4387435796 creator A5069004224 @default.
- W4387435796 date "2023-10-09" @default.
- W4387435796 modified "2023-10-09" @default.
- W4387435796 title "Semi-Supervised Learning Method for the Augmentation of an Incomplete Image-Based Inventory of Earthquake-Induced Soil Liquefaction Surface Effects" @default.
- W4387435796 cites W1984246624 @default.
- W4387435796 cites W1984887591 @default.
- W4387435796 cites W2001619934 @default.
- W4387435796 cites W2010046639 @default.
- W4387435796 cites W2019029724 @default.
- W4387435796 cites W2044465660 @default.
- W4387435796 cites W2049694710 @default.
- W4387435796 cites W2061166067 @default.
- W4387435796 cites W2066806809 @default.
- W4387435796 cites W2085518568 @default.
- W4387435796 cites W2086087329 @default.
- W4387435796 cites W2098577102 @default.
- W4387435796 cites W2113076747 @default.
- W4387435796 cites W2120643962 @default.
- W4387435796 cites W2123810534 @default.
- W4387435796 cites W2127234432 @default.
- W4387435796 cites W2131987814 @default.
- W4387435796 cites W2132579443 @default.
- W4387435796 cites W2133797531 @default.
- W4387435796 cites W2133847703 @default.
- W4387435796 cites W2139900770 @default.
- W4387435796 cites W2155423555 @default.
- W4387435796 cites W2164830012 @default.
- W4387435796 cites W2274076348 @default.
- W4387435796 cites W2323805865 @default.
- W4387435796 cites W2473718776 @default.
- W4387435796 cites W2523720282 @default.
- W4387435796 cites W2610976552 @default.
- W4387435796 cites W2618732405 @default.
- W4387435796 cites W2744001352 @default.
- W4387435796 cites W2793683536 @default.
- W4387435796 cites W2896020828 @default.
- W4387435796 cites W2974061962 @default.
- W4387435796 cites W2993667365 @default.
- W4387435796 cites W3001284661 @default.
- W4387435796 cites W3011652944 @default.
- W4387435796 cites W3022774399 @default.
- W4387435796 cites W3044784064 @default.
- W4387435796 cites W3046007010 @default.
- W4387435796 cites W3091608209 @default.
- W4387435796 cites W3113960880 @default.
- W4387435796 cites W3139956827 @default.
- W4387435796 cites W3164882424 @default.
- W4387435796 cites W3212806947 @default.
- W4387435796 cites W4210918086 @default.
- W4387435796 cites W4241395986 @default.
- W4387435796 cites W4255749134 @default.
- W4387435796 cites W4282945487 @default.
- W4387435796 cites W4317933896 @default.
- W4387435796 cites W4378982299 @default.
- W4387435796 doi "https://doi.org/10.3390/rs15194883" @default.
- W4387435796 hasPublicationYear "2023" @default.
- W4387435796 type Work @default.
- W4387435796 citedByCount "0" @default.
- W4387435796 crossrefType "journal-article" @default.
- W4387435796 hasAuthorship W4387435796A5000667393 @default.
- W4387435796 hasAuthorship W4387435796A5049772278 @default.
- W4387435796 hasAuthorship W4387435796A5055218636 @default.
- W4387435796 hasAuthorship W4387435796A5056924374 @default.
- W4387435796 hasAuthorship W4387435796A5062070289 @default.
- W4387435796 hasAuthorship W4387435796A5069004224 @default.
- W4387435796 hasBestOaLocation W43874357961 @default.
- W4387435796 hasConcept C127313418 @default.
- W4387435796 hasConcept C153180895 @default.
- W4387435796 hasConcept C154945302 @default.
- W4387435796 hasConcept C187320778 @default.
- W4387435796 hasConcept C191859794 @default.
- W4387435796 hasConcept C2778102629 @default.
- W4387435796 hasConcept C41008148 @default.
- W4387435796 hasConcept C62649853 @default.
- W4387435796 hasConceptScore W4387435796C127313418 @default.
- W4387435796 hasConceptScore W4387435796C153180895 @default.
- W4387435796 hasConceptScore W4387435796C154945302 @default.
- W4387435796 hasConceptScore W4387435796C187320778 @default.
- W4387435796 hasConceptScore W4387435796C191859794 @default.
- W4387435796 hasConceptScore W4387435796C2778102629 @default.
- W4387435796 hasConceptScore W4387435796C41008148 @default.
- W4387435796 hasConceptScore W4387435796C62649853 @default.
- W4387435796 hasIssue "19" @default.
- W4387435796 hasLocation W43874357961 @default.
- W4387435796 hasOpenAccess W4387435796 @default.
- W4387435796 hasPrimaryLocation W43874357961 @default.
- W4387435796 hasRelatedWork W1493863471 @default.
- W4387435796 hasRelatedWork W1587402136 @default.
- W4387435796 hasRelatedWork W1992541691 @default.
- W4387435796 hasRelatedWork W2023882058 @default.
- W4387435796 hasRelatedWork W2033914206 @default.