Matches in SemOpenAlex for { <https://semopenalex.org/work/W4387436161> ?p ?o ?g. }
- W4387436161 endingPage "35" @default.
- W4387436161 startingPage "15" @default.
- W4387436161 abstract "Spiking Neural Networks (SNNs) bear the potential for achieving high accuracy with unsupervised learning settings and ultra-low-energy consumption due to their bio-plausible sparse computations. The unsupervised learning capabilities enable the SNNs to efficiently learn unlabeled data, which is desired for real-world applications, as gathering unlabeled data is cheaper than the labeled one. These advantages make SNNs suitable for solving Machine Learning (ML) tasks on resource- and energy-constrained embedded platforms. However, state-of-the-art SNN models require large memory and high energy consumption to achieve high accuracy, thereby making it challenging to employ SNNs on embedded platforms. In this chapter, we discuss our design methodology to improve the energy efficiency of SNNs for enabling their embedded implementations, while maintaining accuracy through unsupervised learning settings and meeting the memory and energy constraints. The key ideas of our design methodology are reducing the neuron operations, improving the learning quality, quantizing the network parameters, and employing approximate DRAM while considering the memory and energy budgets." @default.
- W4387436161 created "2023-10-09" @default.
- W4387436161 creator A5030422145 @default.
- W4387436161 creator A5057618925 @default.
- W4387436161 date "2023-10-10" @default.
- W4387436161 modified "2023-10-09" @default.
- W4387436161 title "A Design Methodology for Energy-Efficient Embedded Spiking Neural Networks" @default.
- W4387436161 cites W101771737 @default.
- W4387436161 cites W1570411240 @default.
- W4387436161 cites W1604973310 @default.
- W4387436161 cites W1975072631 @default.
- W4387436161 cites W1976433270 @default.
- W4387436161 cites W2038511109 @default.
- W4387436161 cites W2060956313 @default.
- W4387436161 cites W2096671349 @default.
- W4387436161 cites W2102397476 @default.
- W4387436161 cites W2157239334 @default.
- W4387436161 cites W2162003043 @default.
- W4387436161 cites W2604319603 @default.
- W4387436161 cites W2605366333 @default.
- W4387436161 cites W2612662066 @default.
- W4387436161 cites W2736237086 @default.
- W4387436161 cites W2745005623 @default.
- W4387436161 cites W2767640945 @default.
- W4387436161 cites W2780099243 @default.
- W4387436161 cites W2783525259 @default.
- W4387436161 cites W2784167469 @default.
- W4387436161 cites W2798878556 @default.
- W4387436161 cites W2884103949 @default.
- W4387436161 cites W2884987480 @default.
- W4387436161 cites W2898323475 @default.
- W4387436161 cites W2906048113 @default.
- W4387436161 cites W2911540273 @default.
- W4387436161 cites W2919115771 @default.
- W4387436161 cites W2922002199 @default.
- W4387436161 cites W2941219224 @default.
- W4387436161 cites W2943529781 @default.
- W4387436161 cites W2959246410 @default.
- W4387436161 cites W2963089565 @default.
- W4387436161 cites W2963966976 @default.
- W4387436161 cites W2964296416 @default.
- W4387436161 cites W2970793768 @default.
- W4387436161 cites W2971489542 @default.
- W4387436161 cites W2979689765 @default.
- W4387436161 cites W2979754840 @default.
- W4387436161 cites W2980812807 @default.
- W4387436161 cites W2981207549 @default.
- W4387436161 cites W2981404720 @default.
- W4387436161 cites W2981494784 @default.
- W4387436161 cites W2997613220 @default.
- W4387436161 cites W3000095666 @default.
- W4387436161 cites W3003366625 @default.
- W4387436161 cites W3038988173 @default.
- W4387436161 cites W3092055689 @default.
- W4387436161 cites W3092582417 @default.
- W4387436161 cites W3098574217 @default.
- W4387436161 cites W3099544558 @default.
- W4387436161 cites W3103266921 @default.
- W4387436161 cites W3105841399 @default.
- W4387436161 cites W3109080038 @default.
- W4387436161 cites W3127251144 @default.
- W4387436161 cites W3132455321 @default.
- W4387436161 cites W3135765046 @default.
- W4387436161 cites W3183450825 @default.
- W4387436161 cites W3195062233 @default.
- W4387436161 cites W3199910846 @default.
- W4387436161 cites W3211983404 @default.
- W4387436161 cites W3214579303 @default.
- W4387436161 cites W4200376271 @default.
- W4387436161 cites W4238371512 @default.
- W4387436161 cites W4293025114 @default.
- W4387436161 doi "https://doi.org/10.1007/978-3-031-39932-9_2" @default.
- W4387436161 hasPublicationYear "2023" @default.
- W4387436161 type Work @default.
- W4387436161 citedByCount "0" @default.
- W4387436161 crossrefType "book-chapter" @default.
- W4387436161 hasAuthorship W4387436161A5030422145 @default.
- W4387436161 hasAuthorship W4387436161A5057618925 @default.
- W4387436161 hasConcept C105795698 @default.
- W4387436161 hasConcept C108583219 @default.
- W4387436161 hasConcept C11731999 @default.
- W4387436161 hasConcept C119599485 @default.
- W4387436161 hasConcept C119857082 @default.
- W4387436161 hasConcept C127413603 @default.
- W4387436161 hasConcept C154945302 @default.
- W4387436161 hasConcept C186370098 @default.
- W4387436161 hasConcept C26517878 @default.
- W4387436161 hasConcept C2742236 @default.
- W4387436161 hasConcept C2780165032 @default.
- W4387436161 hasConcept C33923547 @default.
- W4387436161 hasConcept C38652104 @default.
- W4387436161 hasConcept C41008148 @default.
- W4387436161 hasConcept C50644808 @default.
- W4387436161 hasConcept C8038995 @default.
- W4387436161 hasConceptScore W4387436161C105795698 @default.
- W4387436161 hasConceptScore W4387436161C108583219 @default.
- W4387436161 hasConceptScore W4387436161C11731999 @default.
- W4387436161 hasConceptScore W4387436161C119599485 @default.