Matches in SemOpenAlex for { <https://semopenalex.org/work/W4387440167> ?p ?o ?g. }
- W4387440167 endingPage "e2336997" @default.
- W4387440167 startingPage "e2336997" @default.
- W4387440167 abstract "Informed consent is a critical component of patient care before invasive procedures, yet it is frequently inadequate. Electronic consent forms have the potential to facilitate patient comprehension if they provide information that is readable, accurate, and complete; it is not known if large language model (LLM)-based chatbots may improve informed consent documentation by generating accurate and complete information that is easily understood by patients.To compare the readability, accuracy, and completeness of LLM-based chatbot- vs surgeon-generated information on the risks, benefits, and alternatives (RBAs) of common surgical procedures.This cross-sectional study compared randomly selected surgeon-generated RBAs used in signed electronic consent forms at an academic referral center in San Francisco with LLM-based chatbot-generated (ChatGPT-3.5, OpenAI) RBAs for 6 surgical procedures (colectomy, coronary artery bypass graft, laparoscopic cholecystectomy, inguinal hernia repair, knee arthroplasty, and spinal fusion).Readability was measured using previously validated scales (Flesh-Kincaid grade level, Gunning Fog index, the Simple Measure of Gobbledygook, and the Coleman-Liau index). Scores range from 0 to greater than 20 to indicate the years of education required to understand a text. Accuracy and completeness were assessed using a rubric developed with recommendations from LeapFrog, the Joint Commission, and the American College of Surgeons. Both composite and RBA subgroup scores were compared.The total sample consisted of 36 RBAs, with 1 RBA generated by the LLM-based chatbot and 5 RBAs generated by a surgeon for each of the 6 surgical procedures. The mean (SD) readability score for the LLM-based chatbot RBAs was 12.9 (2.0) vs 15.7 (4.0) for surgeon-generated RBAs (P = .10). The mean (SD) composite completeness and accuracy score was lower for surgeons' RBAs at 1.6 (0.5) than for LLM-based chatbot RBAs at 2.2 (0.4) (P < .001). The LLM-based chatbot scores were higher than the surgeon-generated scores for descriptions of the benefits of surgery (2.3 [0.7] vs 1.4 [0.7]; P < .001) and alternatives to surgery (2.7 [0.5] vs 1.4 [0.7]; P < .001). There was no significant difference in chatbot vs surgeon RBA scores for risks of surgery (1.7 [0.5] vs 1.7 [0.4]; P = .38).The findings of this cross-sectional study suggest that despite not being perfect, LLM-based chatbots have the potential to enhance informed consent documentation. If an LLM were embedded in electronic health records in a manner compliant with the Health Insurance Portability and Accountability Act, it could be used to provide personalized risk information while easing documentation burden for physicians." @default.
- W4387440167 created "2023-10-10" @default.
- W4387440167 creator A5017154069 @default.
- W4387440167 creator A5023387935 @default.
- W4387440167 creator A5025398350 @default.
- W4387440167 creator A5035438895 @default.
- W4387440167 creator A5035628572 @default.
- W4387440167 creator A5062218604 @default.
- W4387440167 creator A5074396246 @default.
- W4387440167 creator A5080286194 @default.
- W4387440167 creator A5085804113 @default.
- W4387440167 date "2023-10-09" @default.
- W4387440167 modified "2023-10-18" @default.
- W4387440167 title "Large Language Model−Based Chatbot vs Surgeon-Generated Informed Consent Documentation for Common Procedures" @default.
- W4387440167 cites W1485843649 @default.
- W4387440167 cites W2008514339 @default.
- W4387440167 cites W2014977309 @default.
- W4387440167 cites W2025734197 @default.
- W4387440167 cites W2041927436 @default.
- W4387440167 cites W2048301249 @default.
- W4387440167 cites W2053232247 @default.
- W4387440167 cites W2066682117 @default.
- W4387440167 cites W2140245628 @default.
- W4387440167 cites W2168360440 @default.
- W4387440167 cites W2169430856 @default.
- W4387440167 cites W2333383121 @default.
- W4387440167 cites W2334398681 @default.
- W4387440167 cites W2754334276 @default.
- W4387440167 cites W2766921387 @default.
- W4387440167 cites W2775251365 @default.
- W4387440167 cites W3027450831 @default.
- W4387440167 cites W3096486309 @default.
- W4387440167 cites W3195132117 @default.
- W4387440167 cites W4226054630 @default.
- W4387440167 cites W4232583809 @default.
- W4387440167 cites W4296050961 @default.
- W4387440167 cites W4311664556 @default.
- W4387440167 cites W4313451233 @default.
- W4387440167 cites W4319295213 @default.
- W4387440167 cites W4319301633 @default.
- W4387440167 cites W4322495192 @default.
- W4387440167 cites W4322752934 @default.
- W4387440167 cites W4327681325 @default.
- W4387440167 cites W4367175507 @default.
- W4387440167 cites W4367310920 @default.
- W4387440167 cites W4376132115 @default.
- W4387440167 cites W4379769651 @default.
- W4387440167 cites W4380730209 @default.
- W4387440167 doi "https://doi.org/10.1001/jamanetworkopen.2023.36997" @default.
- W4387440167 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/37812419" @default.
- W4387440167 hasPublicationYear "2023" @default.
- W4387440167 type Work @default.
- W4387440167 citedByCount "0" @default.
- W4387440167 crossrefType "journal-article" @default.
- W4387440167 hasAuthorship W4387440167A5017154069 @default.
- W4387440167 hasAuthorship W4387440167A5023387935 @default.
- W4387440167 hasAuthorship W4387440167A5025398350 @default.
- W4387440167 hasAuthorship W4387440167A5035438895 @default.
- W4387440167 hasAuthorship W4387440167A5035628572 @default.
- W4387440167 hasAuthorship W4387440167A5062218604 @default.
- W4387440167 hasAuthorship W4387440167A5074396246 @default.
- W4387440167 hasAuthorship W4387440167A5080286194 @default.
- W4387440167 hasAuthorship W4387440167A5085804113 @default.
- W4387440167 hasBestOaLocation W43874401671 @default.
- W4387440167 hasConcept C111640148 @default.
- W4387440167 hasConcept C142724271 @default.
- W4387440167 hasConcept C145420912 @default.
- W4387440167 hasConcept C15744967 @default.
- W4387440167 hasConcept C199360897 @default.
- W4387440167 hasConcept C204787440 @default.
- W4387440167 hasConcept C2778143727 @default.
- W4387440167 hasConcept C41008148 @default.
- W4387440167 hasConcept C509550671 @default.
- W4387440167 hasConcept C56666940 @default.
- W4387440167 hasConcept C68122502 @default.
- W4387440167 hasConcept C71924100 @default.
- W4387440167 hasConceptScore W4387440167C111640148 @default.
- W4387440167 hasConceptScore W4387440167C142724271 @default.
- W4387440167 hasConceptScore W4387440167C145420912 @default.
- W4387440167 hasConceptScore W4387440167C15744967 @default.
- W4387440167 hasConceptScore W4387440167C199360897 @default.
- W4387440167 hasConceptScore W4387440167C204787440 @default.
- W4387440167 hasConceptScore W4387440167C2778143727 @default.
- W4387440167 hasConceptScore W4387440167C41008148 @default.
- W4387440167 hasConceptScore W4387440167C509550671 @default.
- W4387440167 hasConceptScore W4387440167C56666940 @default.
- W4387440167 hasConceptScore W4387440167C68122502 @default.
- W4387440167 hasConceptScore W4387440167C71924100 @default.
- W4387440167 hasIssue "10" @default.
- W4387440167 hasLocation W43874401671 @default.
- W4387440167 hasLocation W43874401672 @default.
- W4387440167 hasOpenAccess W4387440167 @default.
- W4387440167 hasPrimaryLocation W43874401671 @default.
- W4387440167 hasRelatedWork W1964661231 @default.
- W4387440167 hasRelatedWork W1987813225 @default.
- W4387440167 hasRelatedWork W2063908122 @default.
- W4387440167 hasRelatedWork W2527177243 @default.
- W4387440167 hasRelatedWork W2801696663 @default.