Matches in SemOpenAlex for { <https://semopenalex.org/work/W4387440663> ?p ?o ?g. }
- W4387440663 abstract "Predictive understanding of the molecular interaction of electrolyte ions and solvent molecules and their chemical reactivity on electrodes has been a major challenge but is essential for addressing instabilities and surface passivation that occur at the electrode-electrolyte interface of multivalent magnesium batteries. In this work, the isolated intrinsic reactivities of prominent chemical species present in magnesium bis(trifluoromethanesulfonimide) (Mg(TFSI)2) in diglyme (G2) electrolytes, including ionic (TFSI-, [Mg(TFSI)]+, [Mg(TFSI):G2]+, and [Mg(TFSI):2G2]+) as well as neutral molecules (G2) on a well-defined magnesium vanadate cathode (MgV2O4) surface, have been studied using a combination of first-principles calculations and multimodal spectroscopy analysis. Our calculations show that nonsolvated [Mg(TFSI)]+ is the strongest adsorbing species on the MgV2O4 surface compared with all other ions while partially solvated [Mg(TFSI):G2]+ is the most reactive species. The cleavage of C-S bonds in TFSI- to form CF3- is predicted to be the most desired pathway for all ionic species, which is followed by the cleavage of C-O bonds of G2 to yield CH3+ or OCH3- species. The strong stabilization and electron transfer between ionic electrolyte species and MgV2O4 is found to significantly favor these decomposition reactions on the surface compared with intrinsic gas-phase dissociation. Experimentally, we used state-of-the-art ion soft landing to selectively deposit mass-selected TFSI-, [Mg(TFSI):G2]+, and [Mg(TFSI):2G2]+ on a MgV2O4 thin film to form a well-defined electrolyte-MgV2O4 interface. Analysis of the soft-landed interface using X-ray photoelectron, X-ray absorption near-edge structure, electron energy-loss spectroscopies, as well as transmission electron microscopy confirmed the presence of decomposition species (e.g., MgFx, carbonates) and the higher amount of MgFx with [Mg(TFSI):G2]+ formed in the interfacial region, which corroborates the theoretical observation. Overall, these results indicate that Mg2+ desolvation results in electrolyte decomposition facilitated by surface adsorption, charge transfer, and the formation of passivating fluorides on the MgV2O4 cathode surface. This work provides the first evidence of the primary mechanisms leading to electrolyte decomposition at high-voltage oxide surfaces in multivalent batteries and suggests that the design of new, anodically stable electrolytes must target systems that facilitate cation desolvation." @default.
- W4387440663 created "2023-10-10" @default.
- W4387440663 creator A5001141243 @default.
- W4387440663 creator A5001253919 @default.
- W4387440663 creator A5012401237 @default.
- W4387440663 creator A5022757375 @default.
- W4387440663 creator A5023252036 @default.
- W4387440663 creator A5044541675 @default.
- W4387440663 creator A5046520763 @default.
- W4387440663 creator A5048670971 @default.
- W4387440663 creator A5049626346 @default.
- W4387440663 creator A5055413151 @default.
- W4387440663 creator A5061166157 @default.
- W4387440663 creator A5064389955 @default.
- W4387440663 creator A5070054406 @default.
- W4387440663 creator A5077496076 @default.
- W4387440663 creator A5086296829 @default.
- W4387440663 date "2023-10-08" @default.
- W4387440663 modified "2023-10-10" @default.
- W4387440663 title "Electrolyte Reactivity on the MgV<sub>2</sub>O<sub>4</sub> Cathode Surface" @default.
- W4387440663 cites W1973710877 @default.
- W4387440663 cites W1979544533 @default.
- W4387440663 cites W1981368803 @default.
- W4387440663 cites W1985650483 @default.
- W4387440663 cites W1986731219 @default.
- W4387440663 cites W1997942614 @default.
- W4387440663 cites W2003771897 @default.
- W4387440663 cites W2005925415 @default.
- W4387440663 cites W2007395042 @default.
- W4387440663 cites W2007908805 @default.
- W4387440663 cites W2021266249 @default.
- W4387440663 cites W2022085321 @default.
- W4387440663 cites W2030671453 @default.
- W4387440663 cites W2041655819 @default.
- W4387440663 cites W2041828850 @default.
- W4387440663 cites W2044942955 @default.
- W4387440663 cites W2045462665 @default.
- W4387440663 cites W2046387972 @default.
- W4387440663 cites W2046572381 @default.
- W4387440663 cites W2064391824 @default.
- W4387440663 cites W2083222334 @default.
- W4387440663 cites W2119607070 @default.
- W4387440663 cites W2137205422 @default.
- W4387440663 cites W2150687058 @default.
- W4387440663 cites W2152502531 @default.
- W4387440663 cites W2281903826 @default.
- W4387440663 cites W2285838863 @default.
- W4387440663 cites W2540989654 @default.
- W4387440663 cites W2554416348 @default.
- W4387440663 cites W2611654527 @default.
- W4387440663 cites W2758176492 @default.
- W4387440663 cites W2774469163 @default.
- W4387440663 cites W2791368641 @default.
- W4387440663 cites W2810707610 @default.
- W4387440663 cites W2904906033 @default.
- W4387440663 cites W2921219874 @default.
- W4387440663 cites W2972590266 @default.
- W4387440663 cites W2979342423 @default.
- W4387440663 cites W2995823474 @default.
- W4387440663 cites W2997166657 @default.
- W4387440663 cites W3000383234 @default.
- W4387440663 cites W3035163274 @default.
- W4387440663 cites W3045446430 @default.
- W4387440663 cites W3099035091 @default.
- W4387440663 cites W3143261179 @default.
- W4387440663 cites W3160275221 @default.
- W4387440663 cites W3169977577 @default.
- W4387440663 cites W3200909246 @default.
- W4387440663 cites W342017759 @default.
- W4387440663 cites W41478540 @default.
- W4387440663 cites W4200307299 @default.
- W4387440663 cites W4235574122 @default.
- W4387440663 cites W4287718984 @default.
- W4387440663 cites W4318479066 @default.
- W4387440663 cites W4324099146 @default.
- W4387440663 cites W4382294637 @default.
- W4387440663 doi "https://doi.org/10.1021/acsami.3c07875" @default.
- W4387440663 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/37805993" @default.
- W4387440663 hasPublicationYear "2023" @default.
- W4387440663 type Work @default.
- W4387440663 citedByCount "0" @default.
- W4387440663 crossrefType "journal-article" @default.
- W4387440663 hasAuthorship W4387440663A5001141243 @default.
- W4387440663 hasAuthorship W4387440663A5001253919 @default.
- W4387440663 hasAuthorship W4387440663A5012401237 @default.
- W4387440663 hasAuthorship W4387440663A5022757375 @default.
- W4387440663 hasAuthorship W4387440663A5023252036 @default.
- W4387440663 hasAuthorship W4387440663A5044541675 @default.
- W4387440663 hasAuthorship W4387440663A5046520763 @default.
- W4387440663 hasAuthorship W4387440663A5048670971 @default.
- W4387440663 hasAuthorship W4387440663A5049626346 @default.
- W4387440663 hasAuthorship W4387440663A5055413151 @default.
- W4387440663 hasAuthorship W4387440663A5061166157 @default.
- W4387440663 hasAuthorship W4387440663A5064389955 @default.
- W4387440663 hasAuthorship W4387440663A5070054406 @default.
- W4387440663 hasAuthorship W4387440663A5077496076 @default.
- W4387440663 hasAuthorship W4387440663A5086296829 @default.
- W4387440663 hasConcept C102931765 @default.
- W4387440663 hasConcept C127413603 @default.
- W4387440663 hasConcept C145148216 @default.