Matches in SemOpenAlex for { <https://semopenalex.org/work/W4387444490> ?p ?o ?g. }
Showing items 1 to 82 of
82
with 100 items per page.
- W4387444490 abstract "Vehicle re-identification is an important task that involves identifying a specific vehicle from multiple images in computer vision. In recent years, deep learning-based approaches have shown promising results in this field. However, due to the significant variations in vehicle appearances caused by different viewpoints, occlusions, and lighting conditions, it remains a challenging problem. This paper proposed a Deep Orthogonal Local and Global Network (DOLGNet-Attention) for vehicle re-identification, which uses ResNet as the backbone and integrates self-attention and dilated convolution layers to effectively capture local and global features. Our approach combines local and global features by incorporating self-attention and dilated convolution layers into the network architecture. The self-attention mechanism focuses on relevant components within the local feature maps. At the same time, the dilated convolution layers capture information from multiple scales, which enhances the network's ability to handle variations in vehicle appearance. The results show that DOLGNet-Attention achieves top performance in terms of accuracy and robustness. Testing and training accuracy are done to determine the accuracy of the model. It determines image matches and non-match images compared to query images. Similarity values greater than 90% indicate that the image is similar to the query and the vehicle is re-identified. The DOLGNet-Attention model represents a significant advancement in vehicle re-identification, with the potential to improve the accuracy and efficiency of applications such as traffic management, surveillance, and security." @default.
- W4387444490 created "2023-10-10" @default.
- W4387444490 creator A5000127697 @default.
- W4387444490 creator A5026514810 @default.
- W4387444490 creator A5027277808 @default.
- W4387444490 creator A5037762339 @default.
- W4387444490 creator A5043558737 @default.
- W4387444490 creator A5084544785 @default.
- W4387444490 date "2023-07-27" @default.
- W4387444490 modified "2023-10-11" @default.
- W4387444490 title "Vehicle Re-Identification for Intelligent Transport System Using DOLGNet Attention Model" @default.
- W4387444490 cites W2890155761 @default.
- W4387444490 cites W2983188006 @default.
- W4387444490 cites W2991582583 @default.
- W4387444490 cites W99102765 @default.
- W4387444490 doi "https://doi.org/10.1109/icivc58118.2023.10269844" @default.
- W4387444490 hasPublicationYear "2023" @default.
- W4387444490 type Work @default.
- W4387444490 citedByCount "0" @default.
- W4387444490 crossrefType "proceedings-article" @default.
- W4387444490 hasAuthorship W4387444490A5000127697 @default.
- W4387444490 hasAuthorship W4387444490A5026514810 @default.
- W4387444490 hasAuthorship W4387444490A5027277808 @default.
- W4387444490 hasAuthorship W4387444490A5037762339 @default.
- W4387444490 hasAuthorship W4387444490A5043558737 @default.
- W4387444490 hasAuthorship W4387444490A5084544785 @default.
- W4387444490 hasConcept C104317684 @default.
- W4387444490 hasConcept C108583219 @default.
- W4387444490 hasConcept C116834253 @default.
- W4387444490 hasConcept C138885662 @default.
- W4387444490 hasConcept C153180895 @default.
- W4387444490 hasConcept C154945302 @default.
- W4387444490 hasConcept C185592680 @default.
- W4387444490 hasConcept C2776401178 @default.
- W4387444490 hasConcept C31972630 @default.
- W4387444490 hasConcept C41008148 @default.
- W4387444490 hasConcept C41895202 @default.
- W4387444490 hasConcept C45347329 @default.
- W4387444490 hasConcept C50644808 @default.
- W4387444490 hasConcept C52622490 @default.
- W4387444490 hasConcept C55493867 @default.
- W4387444490 hasConcept C59822182 @default.
- W4387444490 hasConcept C63479239 @default.
- W4387444490 hasConcept C84119951 @default.
- W4387444490 hasConcept C86803240 @default.
- W4387444490 hasConcept C89600930 @default.
- W4387444490 hasConceptScore W4387444490C104317684 @default.
- W4387444490 hasConceptScore W4387444490C108583219 @default.
- W4387444490 hasConceptScore W4387444490C116834253 @default.
- W4387444490 hasConceptScore W4387444490C138885662 @default.
- W4387444490 hasConceptScore W4387444490C153180895 @default.
- W4387444490 hasConceptScore W4387444490C154945302 @default.
- W4387444490 hasConceptScore W4387444490C185592680 @default.
- W4387444490 hasConceptScore W4387444490C2776401178 @default.
- W4387444490 hasConceptScore W4387444490C31972630 @default.
- W4387444490 hasConceptScore W4387444490C41008148 @default.
- W4387444490 hasConceptScore W4387444490C41895202 @default.
- W4387444490 hasConceptScore W4387444490C45347329 @default.
- W4387444490 hasConceptScore W4387444490C50644808 @default.
- W4387444490 hasConceptScore W4387444490C52622490 @default.
- W4387444490 hasConceptScore W4387444490C55493867 @default.
- W4387444490 hasConceptScore W4387444490C59822182 @default.
- W4387444490 hasConceptScore W4387444490C63479239 @default.
- W4387444490 hasConceptScore W4387444490C84119951 @default.
- W4387444490 hasConceptScore W4387444490C86803240 @default.
- W4387444490 hasConceptScore W4387444490C89600930 @default.
- W4387444490 hasLocation W43874444901 @default.
- W4387444490 hasOpenAccess W4387444490 @default.
- W4387444490 hasPrimaryLocation W43874444901 @default.
- W4387444490 hasRelatedWork W1532073221 @default.
- W4387444490 hasRelatedWork W1996690921 @default.
- W4387444490 hasRelatedWork W2171975302 @default.
- W4387444490 hasRelatedWork W2611989081 @default.
- W4387444490 hasRelatedWork W2731899572 @default.
- W4387444490 hasRelatedWork W2770593030 @default.
- W4387444490 hasRelatedWork W3154990682 @default.
- W4387444490 hasRelatedWork W4281727072 @default.
- W4387444490 hasRelatedWork W4312219546 @default.
- W4387444490 hasRelatedWork W4375867731 @default.
- W4387444490 isParatext "false" @default.
- W4387444490 isRetracted "false" @default.
- W4387444490 workType "article" @default.