Matches in SemOpenAlex for { <https://semopenalex.org/work/W4387445674> ?p ?o ?g. }
Showing items 1 to 75 of
75
with 100 items per page.
- W4387445674 abstract "The high-fidelity identification of blood vessels plays a vital role in disease diagnosis and surgical planning. Notably, near-infrared (NIR) transillumination imaging is a safe and effective method for visualizing blood vessels. However, such images contain severe blurring that leads to difficulties obtaining sufficient well-labeled data. Inspired by the Domain Adaptation (DA) approach, this paper presents a novel decoder design called DeMerge Transformer (DMTrans) that can learn from related domains better and serve as a general upsampling approach that cooperates with multi-scale features. Our proposed model consists of a DeMerge (DM) operation and a transformer as a channel-rebuilding mechanism to complement the demerged features. DM reverses patch merging from the transformer downsampling to convert the channel information to the spatial dimension. Considering the missing channel, we further propose using a transformer architecture and a relative channel position bias to remodel the channel information in the upsampled features. The proposed technique is evaluated on a simulated blurred DRIVE dataset and a NIR vessel dataset. The results demonstrate that DMTrans outperforms state-of-the-art methods by improving most metrics using the DA method, specifically an average dice score increase of 3.47% on simulated DRIVE test data at multiple depths and 1.71% on the NIR vessel dataset." @default.
- W4387445674 created "2023-10-10" @default.
- W4387445674 creator A5057487414 @default.
- W4387445674 creator A5073236797 @default.
- W4387445674 creator A5086576776 @default.
- W4387445674 date "2023-07-27" @default.
- W4387445674 modified "2023-10-11" @default.
- W4387445674 title "DeMerge Transformer: A Learnable Decoder for Near-infrared Blurred Vessel Segmentation with Domain Adaptation" @default.
- W4387445674 cites W1977177161 @default.
- W4387445674 cites W2033723371 @default.
- W4387445674 cites W2105284038 @default.
- W4387445674 cites W2113598963 @default.
- W4387445674 cites W2126360307 @default.
- W4387445674 cites W2145305441 @default.
- W4387445674 cites W2150769593 @default.
- W4387445674 cites W2155251704 @default.
- W4387445674 cites W2752782242 @default.
- W4387445674 cites W2791117644 @default.
- W4387445674 cites W2964184998 @default.
- W4387445674 cites W2983446232 @default.
- W4387445674 cites W2997150500 @default.
- W4387445674 cites W3100715778 @default.
- W4387445674 cites W3131500599 @default.
- W4387445674 cites W3138516171 @default.
- W4387445674 cites W3204497690 @default.
- W4387445674 cites W4213328656 @default.
- W4387445674 cites W4283828743 @default.
- W4387445674 doi "https://doi.org/10.1109/icivc58118.2023.10270774" @default.
- W4387445674 hasPublicationYear "2023" @default.
- W4387445674 type Work @default.
- W4387445674 citedByCount "0" @default.
- W4387445674 crossrefType "proceedings-article" @default.
- W4387445674 hasAuthorship W4387445674A5057487414 @default.
- W4387445674 hasAuthorship W4387445674A5073236797 @default.
- W4387445674 hasAuthorship W4387445674A5086576776 @default.
- W4387445674 hasConcept C110384440 @default.
- W4387445674 hasConcept C115961682 @default.
- W4387445674 hasConcept C119599485 @default.
- W4387445674 hasConcept C124504099 @default.
- W4387445674 hasConcept C127413603 @default.
- W4387445674 hasConcept C153180895 @default.
- W4387445674 hasConcept C154945302 @default.
- W4387445674 hasConcept C165801399 @default.
- W4387445674 hasConcept C31972630 @default.
- W4387445674 hasConcept C41008148 @default.
- W4387445674 hasConcept C66322947 @default.
- W4387445674 hasConcept C89600930 @default.
- W4387445674 hasConceptScore W4387445674C110384440 @default.
- W4387445674 hasConceptScore W4387445674C115961682 @default.
- W4387445674 hasConceptScore W4387445674C119599485 @default.
- W4387445674 hasConceptScore W4387445674C124504099 @default.
- W4387445674 hasConceptScore W4387445674C127413603 @default.
- W4387445674 hasConceptScore W4387445674C153180895 @default.
- W4387445674 hasConceptScore W4387445674C154945302 @default.
- W4387445674 hasConceptScore W4387445674C165801399 @default.
- W4387445674 hasConceptScore W4387445674C31972630 @default.
- W4387445674 hasConceptScore W4387445674C41008148 @default.
- W4387445674 hasConceptScore W4387445674C66322947 @default.
- W4387445674 hasConceptScore W4387445674C89600930 @default.
- W4387445674 hasLocation W43874456741 @default.
- W4387445674 hasOpenAccess W4387445674 @default.
- W4387445674 hasPrimaryLocation W43874456741 @default.
- W4387445674 hasRelatedWork W1522196789 @default.
- W4387445674 hasRelatedWork W1983892167 @default.
- W4387445674 hasRelatedWork W1991429770 @default.
- W4387445674 hasRelatedWork W2281134365 @default.
- W4387445674 hasRelatedWork W2607795551 @default.
- W4387445674 hasRelatedWork W3155117723 @default.
- W4387445674 hasRelatedWork W4306309518 @default.
- W4387445674 hasRelatedWork W4310746709 @default.
- W4387445674 hasRelatedWork W4385574037 @default.
- W4387445674 hasRelatedWork W4386075645 @default.
- W4387445674 isParatext "false" @default.
- W4387445674 isRetracted "false" @default.
- W4387445674 workType "article" @default.