Matches in SemOpenAlex for { <https://semopenalex.org/work/W4387445984> ?p ?o ?g. }
Showing items 1 to 78 of
78
with 100 items per page.
- W4387445984 abstract "With the rapid development of deep learning, it has been adopted as a primary method of analysis in non-profiled side-channel attacks. However, due to the noises in the collected power traces and the significant amount of data required to train a deep learning neural network, the non-profiled deep learning analysis method faces challenges in practical application. In this paper, a novel non-profiled differential deep learning analysis architecture that incorporates a self-supervised autoencoder is proposed. The autoencoder is designed to reduce the noise and strengthen the features of power traces before they are used as training data for the neural network. The experiment results indicate that not only the architecture outperforms the traditional differential deep learning network with more distinction, but it also distinguishes the correct key with a lower computational cost. The architecture is also examined with small datasets and is proved to be able to maintain the capability of recovering the correct key when the traditional architecture has failed." @default.
- W4387445984 created "2023-10-10" @default.
- W4387445984 creator A5010846765 @default.
- W4387445984 creator A5069616003 @default.
- W4387445984 creator A5071289910 @default.
- W4387445984 creator A5074900624 @default.
- W4387445984 creator A5081282434 @default.
- W4387445984 date "2023-07-08" @default.
- W4387445984 modified "2023-10-11" @default.
- W4387445984 title "An Optimized Non-profiled Deep Learning-Based Power Analysis with Self-supervised Autoencoders" @default.
- W4387445984 cites W1562542037 @default.
- W4387445984 cites W2154909745 @default.
- W4387445984 cites W2556867355 @default.
- W4387445984 cites W2990296674 @default.
- W4387445984 cites W3003917182 @default.
- W4387445984 cites W3127637494 @default.
- W4387445984 cites W3154592730 @default.
- W4387445984 cites W3166170034 @default.
- W4387445984 cites W3173151551 @default.
- W4387445984 cites W3212334786 @default.
- W4387445984 cites W4206230818 @default.
- W4387445984 cites W4251361495 @default.
- W4387445984 doi "https://doi.org/10.1109/icsip57908.2023.10270897" @default.
- W4387445984 hasPublicationYear "2023" @default.
- W4387445984 type Work @default.
- W4387445984 citedByCount "0" @default.
- W4387445984 crossrefType "proceedings-article" @default.
- W4387445984 hasAuthorship W4387445984A5010846765 @default.
- W4387445984 hasAuthorship W4387445984A5069616003 @default.
- W4387445984 hasAuthorship W4387445984A5071289910 @default.
- W4387445984 hasAuthorship W4387445984A5074900624 @default.
- W4387445984 hasAuthorship W4387445984A5081282434 @default.
- W4387445984 hasConcept C101738243 @default.
- W4387445984 hasConcept C108583219 @default.
- W4387445984 hasConcept C115961682 @default.
- W4387445984 hasConcept C119857082 @default.
- W4387445984 hasConcept C123657996 @default.
- W4387445984 hasConcept C142362112 @default.
- W4387445984 hasConcept C153180895 @default.
- W4387445984 hasConcept C153349607 @default.
- W4387445984 hasConcept C154945302 @default.
- W4387445984 hasConcept C193415008 @default.
- W4387445984 hasConcept C26517878 @default.
- W4387445984 hasConcept C38652104 @default.
- W4387445984 hasConcept C41008148 @default.
- W4387445984 hasConcept C50644808 @default.
- W4387445984 hasConcept C99498987 @default.
- W4387445984 hasConceptScore W4387445984C101738243 @default.
- W4387445984 hasConceptScore W4387445984C108583219 @default.
- W4387445984 hasConceptScore W4387445984C115961682 @default.
- W4387445984 hasConceptScore W4387445984C119857082 @default.
- W4387445984 hasConceptScore W4387445984C123657996 @default.
- W4387445984 hasConceptScore W4387445984C142362112 @default.
- W4387445984 hasConceptScore W4387445984C153180895 @default.
- W4387445984 hasConceptScore W4387445984C153349607 @default.
- W4387445984 hasConceptScore W4387445984C154945302 @default.
- W4387445984 hasConceptScore W4387445984C193415008 @default.
- W4387445984 hasConceptScore W4387445984C26517878 @default.
- W4387445984 hasConceptScore W4387445984C38652104 @default.
- W4387445984 hasConceptScore W4387445984C41008148 @default.
- W4387445984 hasConceptScore W4387445984C50644808 @default.
- W4387445984 hasConceptScore W4387445984C99498987 @default.
- W4387445984 hasLocation W43874459841 @default.
- W4387445984 hasOpenAccess W4387445984 @default.
- W4387445984 hasPrimaryLocation W43874459841 @default.
- W4387445984 hasRelatedWork W2159052453 @default.
- W4387445984 hasRelatedWork W2566616303 @default.
- W4387445984 hasRelatedWork W2669956259 @default.
- W4387445984 hasRelatedWork W2734887215 @default.
- W4387445984 hasRelatedWork W2752972570 @default.
- W4387445984 hasRelatedWork W3013693939 @default.
- W4387445984 hasRelatedWork W3131327266 @default.
- W4387445984 hasRelatedWork W4249005693 @default.
- W4387445984 hasRelatedWork W4297051394 @default.
- W4387445984 hasRelatedWork W4365790226 @default.
- W4387445984 isParatext "false" @default.
- W4387445984 isRetracted "false" @default.
- W4387445984 workType "article" @default.