Matches in SemOpenAlex for { <https://semopenalex.org/work/W4387446045> ?p ?o ?g. }
Showing items 1 to 90 of
90
with 100 items per page.
- W4387446045 abstract "Machine vision has demonstrated effective discrimination between genuine and counterfeit cigarettes. However, the constructed identification model is limited to only a few specifications of cigarette products, and its versatility is constrained. Additionally, due to challenges in obtaining fake cigarettes and the instability of their features, it is difficult to extract representative fake sample features. This can severely compromise the reliability of the identification method. To address these limitations, we propose a novel cigarette authentication method that employs deep learning-based anomaly detection of adhesive mark images. Our approach involves a self-designed image acquisition device to capture images of cigarette packet adhesive marks. We then remove the partial background of images to obtain adhesive mark image samples. Finally, we train the convolutional neural network classification model using only real samples, then generate the maximum predicted probability value based on the trained model for the sample to be detected and compare this value with a threshold to achieve authentication. Genuine cigarette packets produced by 10 types of packaging machines and counterfeit cigarette packets were used as objects, covering 37 cigarette specifications. Three classic neural network models were selected for experiments and 787 samples were identified. The results demonstrate that all models have authentication capabilities when using the mean value as the threshold, with InceptionV1 having a discrimination accuracy, sensitivity, and specificity of 94.41%, 94.22%, and 94.69%, respectively. And the time for all models to identify a single sample is around 10 ms. The proposed method is both simple and efficient, as it can construct a discrimination model without using any fake samples. Furthermore, the ability to a variety of cigarette specifications indicates a high practical application value." @default.
- W4387446045 created "2023-10-10" @default.
- W4387446045 creator A5015199815 @default.
- W4387446045 creator A5017715295 @default.
- W4387446045 creator A5038851564 @default.
- W4387446045 creator A5040783886 @default.
- W4387446045 creator A5086060908 @default.
- W4387446045 creator A5089559746 @default.
- W4387446045 date "2023-07-27" @default.
- W4387446045 modified "2023-10-11" @default.
- W4387446045 title "Cigarette Authentication by Using Deep Learning-Based Anomaly Detection of Adhesive Mark Images" @default.
- W4387446045 cites W2097117768 @default.
- W4387446045 cites W2618530766 @default.
- W4387446045 cites W2622826443 @default.
- W4387446045 cites W3118600296 @default.
- W4387446045 doi "https://doi.org/10.1109/icivc58118.2023.10270366" @default.
- W4387446045 hasPublicationYear "2023" @default.
- W4387446045 type Work @default.
- W4387446045 citedByCount "0" @default.
- W4387446045 crossrefType "proceedings-article" @default.
- W4387446045 hasAuthorship W4387446045A5015199815 @default.
- W4387446045 hasAuthorship W4387446045A5017715295 @default.
- W4387446045 hasAuthorship W4387446045A5038851564 @default.
- W4387446045 hasAuthorship W4387446045A5040783886 @default.
- W4387446045 hasAuthorship W4387446045A5086060908 @default.
- W4387446045 hasAuthorship W4387446045A5089559746 @default.
- W4387446045 hasConcept C108583219 @default.
- W4387446045 hasConcept C116834253 @default.
- W4387446045 hasConcept C121332964 @default.
- W4387446045 hasConcept C148417208 @default.
- W4387446045 hasConcept C153180895 @default.
- W4387446045 hasConcept C154945302 @default.
- W4387446045 hasConcept C158379750 @default.
- W4387446045 hasConcept C163258240 @default.
- W4387446045 hasConcept C17744445 @default.
- W4387446045 hasConcept C185592680 @default.
- W4387446045 hasConcept C198531522 @default.
- W4387446045 hasConcept C199539241 @default.
- W4387446045 hasConcept C2779356469 @default.
- W4387446045 hasConcept C31972630 @default.
- W4387446045 hasConcept C38652104 @default.
- W4387446045 hasConcept C41008148 @default.
- W4387446045 hasConcept C43214815 @default.
- W4387446045 hasConcept C43617362 @default.
- W4387446045 hasConcept C50644808 @default.
- W4387446045 hasConcept C52622490 @default.
- W4387446045 hasConcept C59822182 @default.
- W4387446045 hasConcept C62520636 @default.
- W4387446045 hasConcept C81363708 @default.
- W4387446045 hasConcept C86803240 @default.
- W4387446045 hasConceptScore W4387446045C108583219 @default.
- W4387446045 hasConceptScore W4387446045C116834253 @default.
- W4387446045 hasConceptScore W4387446045C121332964 @default.
- W4387446045 hasConceptScore W4387446045C148417208 @default.
- W4387446045 hasConceptScore W4387446045C153180895 @default.
- W4387446045 hasConceptScore W4387446045C154945302 @default.
- W4387446045 hasConceptScore W4387446045C158379750 @default.
- W4387446045 hasConceptScore W4387446045C163258240 @default.
- W4387446045 hasConceptScore W4387446045C17744445 @default.
- W4387446045 hasConceptScore W4387446045C185592680 @default.
- W4387446045 hasConceptScore W4387446045C198531522 @default.
- W4387446045 hasConceptScore W4387446045C199539241 @default.
- W4387446045 hasConceptScore W4387446045C2779356469 @default.
- W4387446045 hasConceptScore W4387446045C31972630 @default.
- W4387446045 hasConceptScore W4387446045C38652104 @default.
- W4387446045 hasConceptScore W4387446045C41008148 @default.
- W4387446045 hasConceptScore W4387446045C43214815 @default.
- W4387446045 hasConceptScore W4387446045C43617362 @default.
- W4387446045 hasConceptScore W4387446045C50644808 @default.
- W4387446045 hasConceptScore W4387446045C52622490 @default.
- W4387446045 hasConceptScore W4387446045C59822182 @default.
- W4387446045 hasConceptScore W4387446045C62520636 @default.
- W4387446045 hasConceptScore W4387446045C81363708 @default.
- W4387446045 hasConceptScore W4387446045C86803240 @default.
- W4387446045 hasLocation W43874460451 @default.
- W4387446045 hasOpenAccess W4387446045 @default.
- W4387446045 hasPrimaryLocation W43874460451 @default.
- W4387446045 hasRelatedWork W1539823648 @default.
- W4387446045 hasRelatedWork W1579156572 @default.
- W4387446045 hasRelatedWork W2357749344 @default.
- W4387446045 hasRelatedWork W2362200800 @default.
- W4387446045 hasRelatedWork W3013232399 @default.
- W4387446045 hasRelatedWork W3191226418 @default.
- W4387446045 hasRelatedWork W3211012000 @default.
- W4387446045 hasRelatedWork W4290078996 @default.
- W4387446045 hasRelatedWork W4323356230 @default.
- W4387446045 hasRelatedWork W4372352523 @default.
- W4387446045 isParatext "false" @default.
- W4387446045 isRetracted "false" @default.
- W4387446045 workType "article" @default.