Matches in SemOpenAlex for { <https://semopenalex.org/work/W4387446937> ?p ?o ?g. }
Showing items 1 to 80 of
80
with 100 items per page.
- W4387446937 abstract "Abstract Fracturing bedrock formations using a pressurized fluid to increase hydrocarbon production has been around since 1866 (Hicks 2013). It has been used in unconventional formations for over six decades since George Mitchell started using it for shale formations (New York Times 2013). For most wells in North America, hydraulic fracturing is usually performed by plug-and-perf (Lehr 2021). To reduce operational complexity, time, and cost time and meet Environmental, Social, and Governance (ESG) goals, operating companies are in a continuous search for alternative innovative fracturing systems. A new approach to traditional hydraulic fracturing was recently presented, together with several case histories from Texas, the U.S., and Alberta, Canada showing significantly improved project economics and lower environmental impact (Watkins et al. 2023a, b). Plug-and-perf uses a perforating shape charge gun (Simpson 2017) to trigger charges to create channels through the casing into the adjacent rock formation (Renpu 2011). When the downhole plug seals the well, the high-pressure fracturing fluid is diverted into the channels to fracture the shale formation. While the plug-and-perf method has successfully increased hydrocarbon production, there are areas that can be improved. One key area overdue for efficiency improvement is the perforation cluster efficiency (PCE) of the fracture formation since it is estimated that one-third of perforation clusters fail to extend and have low production efficiencies (Miller et al. 2011; Wheaton et al. 2014). A key problem is stress shadows (Nagel. 2015; Wang et al. 2022), where stresses play a considerable role in fracture formation. Perforations are placed in areas that the producers believe will result in maximum production, but the fracture propagates following underground conditions. This is typically away from earlier fractures. Consequently, the more stages near one another, the more skewed the stress shadows and the more inefficient the well due to the poor fracture network. If stress shadowing can be neutralized, it is likely that a well’s estimated ultimate recovery (EUR) or lifetime production could be one-third greater (Miller et al. 2011; Wheaton et al. 2014). The magnitude of the problem, especially considering the current ESG trend, means companies should investigate ways to enhance resource extraction—especially if it can be done without incurring additional operating expenses. A fracture follows the path of least resistance unless it is forced otherwise. When conventional perforating guns trigger a fracture, they create long spiral-patterned perforations that leave the formation undertreated because fluid and proppant tend to flow and settle below the wellbore. Multiple spiral perforations also create competing fractures near the well that impede proppant and fluid penetration during treatment. (Dailey 2002; Li et al. 2022). This creates a bottom-heavy three-dimensional pattern that does not fully leverage the placement of the clusters within the target stage. This paper explores a newly developed and recently field deployed technology (Watkins et al. 2023a, b) that produces very long fractures in a two-dimensional pattern within a single plane in both limited entry and single-point entry fracturing. This new fracturing system described previously becomes a more efficient alternative to traditional plug-and-perf technology. This process forces fractures to stay in the targeted locations much further to significantly reduce the tendency for a fracture to intrude into adjacent fractures. The net result of keeping fractures within a single plane is a higher EUR over a well’s lifetime for a given unit of fracturing costs since the fractures form in the ideal locations that the producers identified beforehand." @default.
- W4387446937 created "2023-10-10" @default.
- W4387446937 creator A5025703562 @default.
- W4387446937 creator A5049097411 @default.
- W4387446937 creator A5059381105 @default.
- W4387446937 creator A5079423324 @default.
- W4387446937 date "2023-10-09" @default.
- W4387446937 modified "2023-10-11" @default.
- W4387446937 title "Reducing Emissions for Extended-Reach Well Stimulation - Preexistent Sleeve Nozzle Design for Targeted Planar Propagation as a Counter to Stress Shadowing in Hydraulic Fracturing" @default.
- W4387446937 cites W2002321052 @default.
- W4387446937 cites W2075020932 @default.
- W4387446937 cites W2075881158 @default.
- W4387446937 cites W2147767097 @default.
- W4387446937 cites W2747419134 @default.
- W4387446937 cites W2970044034 @default.
- W4387446937 cites W2999751373 @default.
- W4387446937 cites W3207987013 @default.
- W4387446937 cites W4200228917 @default.
- W4387446937 cites W4289831402 @default.
- W4387446937 cites W4324026265 @default.
- W4387446937 cites W4366777263 @default.
- W4387446937 doi "https://doi.org/10.2118/214837-ms" @default.
- W4387446937 hasPublicationYear "2023" @default.
- W4387446937 type Work @default.
- W4387446937 citedByCount "0" @default.
- W4387446937 crossrefType "proceedings-article" @default.
- W4387446937 hasAuthorship W4387446937A5025703562 @default.
- W4387446937 hasAuthorship W4387446937A5049097411 @default.
- W4387446937 hasAuthorship W4387446937A5059381105 @default.
- W4387446937 hasAuthorship W4387446937A5079423324 @default.
- W4387446937 hasConcept C127313418 @default.
- W4387446937 hasConcept C127413603 @default.
- W4387446937 hasConcept C151730666 @default.
- W4387446937 hasConcept C153127940 @default.
- W4387446937 hasConcept C164205550 @default.
- W4387446937 hasConcept C16674752 @default.
- W4387446937 hasConcept C168630323 @default.
- W4387446937 hasConcept C187320778 @default.
- W4387446937 hasConcept C25197100 @default.
- W4387446937 hasConcept C2778456384 @default.
- W4387446937 hasConcept C2778527123 @default.
- W4387446937 hasConcept C2779096232 @default.
- W4387446937 hasConcept C30399818 @default.
- W4387446937 hasConcept C39432304 @default.
- W4387446937 hasConcept C43369102 @default.
- W4387446937 hasConcept C78519656 @default.
- W4387446937 hasConcept C78762247 @default.
- W4387446937 hasConceptScore W4387446937C127313418 @default.
- W4387446937 hasConceptScore W4387446937C127413603 @default.
- W4387446937 hasConceptScore W4387446937C151730666 @default.
- W4387446937 hasConceptScore W4387446937C153127940 @default.
- W4387446937 hasConceptScore W4387446937C164205550 @default.
- W4387446937 hasConceptScore W4387446937C16674752 @default.
- W4387446937 hasConceptScore W4387446937C168630323 @default.
- W4387446937 hasConceptScore W4387446937C187320778 @default.
- W4387446937 hasConceptScore W4387446937C25197100 @default.
- W4387446937 hasConceptScore W4387446937C2778456384 @default.
- W4387446937 hasConceptScore W4387446937C2778527123 @default.
- W4387446937 hasConceptScore W4387446937C2779096232 @default.
- W4387446937 hasConceptScore W4387446937C30399818 @default.
- W4387446937 hasConceptScore W4387446937C39432304 @default.
- W4387446937 hasConceptScore W4387446937C43369102 @default.
- W4387446937 hasConceptScore W4387446937C78519656 @default.
- W4387446937 hasConceptScore W4387446937C78762247 @default.
- W4387446937 hasLocation W43874469371 @default.
- W4387446937 hasOpenAccess W4387446937 @default.
- W4387446937 hasPrimaryLocation W43874469371 @default.
- W4387446937 hasRelatedWork W1971952198 @default.
- W4387446937 hasRelatedWork W2022648072 @default.
- W4387446937 hasRelatedWork W2096745608 @default.
- W4387446937 hasRelatedWork W2363582280 @default.
- W4387446937 hasRelatedWork W2384422130 @default.
- W4387446937 hasRelatedWork W2750688477 @default.
- W4387446937 hasRelatedWork W2947136931 @default.
- W4387446937 hasRelatedWork W3146019719 @default.
- W4387446937 hasRelatedWork W3176006832 @default.
- W4387446937 hasRelatedWork W4249146297 @default.
- W4387446937 isParatext "false" @default.
- W4387446937 isRetracted "false" @default.
- W4387446937 workType "article" @default.