Matches in SemOpenAlex for { <https://semopenalex.org/work/W4387447660> ?p ?o ?g. }
Showing items 1 to 68 of
68
with 100 items per page.
- W4387447660 abstract "Abstract The objective of this work is to present an efficient method based on gradient-based optimization using a least-squares support-vector regression (LS-SVR) model to solve well-shutoff and well-control optimization problems. We formulate a continuous differentiable NPV for the well shutoff optimization problem. In our approach, switching well on/off times are considered part of the design variables. Our parameterization is based on a fixed number of cycles, the length of each cycle, and the production time fraction in each cycle. The remaining fraction of each cycle is the shutoff time fraction. We use linear equality constraints so that the summation of the length of each cycle is equal to the life of the production, and thus, we do not need to truncate the length of the last cycle. We consider both the stochastic simplex gradient optimization and the machine learning-based least-squares support vector regression (LS-SVR) proxy but we update it during optimization so that the updated proxy remains predictive toward promising regions of search space during the optimization. We compare the performance of the proposed method using the LS-SVR runs coupled with iterative sampling refinement method (ISR) to update the proxy during optimization with the popular stochastic simplex approximate gradient (StoSAG) and reservoir- simulations runs for a synthetic example considering a waterflooding process in a conventional compositional oil reservoir with 2 water injectors and 4 producers. Results show that higher computational efficiency is achieved using the LS-SVR-based optimization method over the StoSAG-based optimization method using a high-fidelity numerical simulator. The proposed LS-SVR-based framework is shown to be at least 3 to 7 times computationally more efficient, depending on the cases considered than the StoSAG using a high-fidelity numerical simulator. For the waterflooding optimization example, designing multiple shutoffs and making cycle length unknown are found to be not beneficial as compared to single shutoff cases as they yield lower NPVs than single shutoff cases. However, we observe that the size and sampling of the training data, as well as the selection of bound constraints for the well controls, influence the performance of the LS-SVR-based optimization method. The well-shutoff/well-control optimization problem can be handled with the gradient-based optimization methods by introducing a production time fraction as the design variable for each cycle. This is the first LSSVR application for the well shutoff and well-control optimization problem. The proposed LS-SVR-based optimization framework has great potential to be used as an efficient tool for this type of optimization problem." @default.
- W4387447660 created "2023-10-10" @default.
- W4387447660 creator A5046115351 @default.
- W4387447660 creator A5068396583 @default.
- W4387447660 date "2023-10-09" @default.
- W4387447660 modified "2023-10-11" @default.
- W4387447660 title "Life-Cycle Gradient-Based Production Optimization Including Well-Shutoff Option with Least-Squares Support Vector Regression" @default.
- W4387447660 cites W1596717185 @default.
- W4387447660 cites W1976733354 @default.
- W4387447660 cites W1977267386 @default.
- W4387447660 cites W1978996791 @default.
- W4387447660 cites W2015785969 @default.
- W4387447660 cites W2042231183 @default.
- W4387447660 cites W2043047007 @default.
- W4387447660 cites W2051554019 @default.
- W4387447660 cites W2069297302 @default.
- W4387447660 cites W2073976396 @default.
- W4387447660 cites W2083753356 @default.
- W4387447660 cites W2501741252 @default.
- W4387447660 cites W2793743408 @default.
- W4387447660 cites W2897950451 @default.
- W4387447660 cites W3081066669 @default.
- W4387447660 cites W3159208859 @default.
- W4387447660 cites W4239510810 @default.
- W4387447660 cites W4249517230 @default.
- W4387447660 doi "https://doi.org/10.2118/215110-ms" @default.
- W4387447660 hasPublicationYear "2023" @default.
- W4387447660 type Work @default.
- W4387447660 citedByCount "0" @default.
- W4387447660 crossrefType "proceedings-article" @default.
- W4387447660 hasAuthorship W4387447660A5046115351 @default.
- W4387447660 hasAuthorship W4387447660A5068396583 @default.
- W4387447660 hasConcept C11413529 @default.
- W4387447660 hasConcept C119857082 @default.
- W4387447660 hasConcept C122357587 @default.
- W4387447660 hasConcept C12267149 @default.
- W4387447660 hasConcept C126255220 @default.
- W4387447660 hasConcept C137836250 @default.
- W4387447660 hasConcept C164088818 @default.
- W4387447660 hasConcept C194387892 @default.
- W4387447660 hasConcept C33923547 @default.
- W4387447660 hasConcept C41008148 @default.
- W4387447660 hasConceptScore W4387447660C11413529 @default.
- W4387447660 hasConceptScore W4387447660C119857082 @default.
- W4387447660 hasConceptScore W4387447660C122357587 @default.
- W4387447660 hasConceptScore W4387447660C12267149 @default.
- W4387447660 hasConceptScore W4387447660C126255220 @default.
- W4387447660 hasConceptScore W4387447660C137836250 @default.
- W4387447660 hasConceptScore W4387447660C164088818 @default.
- W4387447660 hasConceptScore W4387447660C194387892 @default.
- W4387447660 hasConceptScore W4387447660C33923547 @default.
- W4387447660 hasConceptScore W4387447660C41008148 @default.
- W4387447660 hasLocation W43874476601 @default.
- W4387447660 hasOpenAccess W4387447660 @default.
- W4387447660 hasPrimaryLocation W43874476601 @default.
- W4387447660 hasRelatedWork W179906810 @default.
- W4387447660 hasRelatedWork W188711498 @default.
- W4387447660 hasRelatedWork W1978379809 @default.
- W4387447660 hasRelatedWork W1992731528 @default.
- W4387447660 hasRelatedWork W2390455111 @default.
- W4387447660 hasRelatedWork W2766340440 @default.
- W4387447660 hasRelatedWork W3199277564 @default.
- W4387447660 hasRelatedWork W3217415483 @default.
- W4387447660 hasRelatedWork W4242056221 @default.
- W4387447660 hasRelatedWork W2565276936 @default.
- W4387447660 isParatext "false" @default.
- W4387447660 isRetracted "false" @default.
- W4387447660 workType "article" @default.