Matches in SemOpenAlex for { <https://semopenalex.org/work/W4387448210> ?p ?o ?g. }
Showing items 1 to 50 of
50
with 100 items per page.
- W4387448210 endingPage "18" @default.
- W4387448210 startingPage "1" @default.
- W4387448210 abstract "Federated learning (FL) and split learning (SL) have emerged as two promising distributed machine learning paradigms. However, implementing either FL or SL over clients with limited computation and communication resources often faces the challenge of achieving delay-efficient model training. To overcome this challenge, we propose a novel distributed <underline xmlns:mml=http://www.w3.org/1998/Math/MathML xmlns:xlink=http://www.w3.org/1999/xlink>C</u> lustering-based <underline xmlns:mml=http://www.w3.org/1998/Math/MathML xmlns:xlink=http://www.w3.org/1999/xlink>H</u> ybrid f <underline xmlns:mml=http://www.w3.org/1998/Math/MathML xmlns:xlink=http://www.w3.org/1999/xlink>E</u> d <underline xmlns:mml=http://www.w3.org/1998/Math/MathML xmlns:xlink=http://www.w3.org/1999/xlink>E</u> rated <underline xmlns:mml=http://www.w3.org/1998/Math/MathML xmlns:xlink=http://www.w3.org/1999/xlink>S</u> plit l <underline xmlns:mml=http://www.w3.org/1998/Math/MathML xmlns:xlink=http://www.w3.org/1999/xlink>E</u> arning ( <italic xmlns:mml=http://www.w3.org/1998/Math/MathML xmlns:xlink=http://www.w3.org/1999/xlink>CHEESE</i> ) framework, consolidating distributed computation resources among clients by device-to-device (D2D) communications, which works in an intra-serial inter-parallel manner. In <italic xmlns:mml=http://www.w3.org/1998/Math/MathML xmlns:xlink=http://www.w3.org/1999/xlink>CHEESE</i> , each learning client (LC) can form a learning cluster with its neighboring helping clients via D2D communications to train an FL model collaboratively. Specifically, inside each cluster, the model is split into multiple model segments via a model splitting and allocation (MSA) strategy, while each cluster member trains one segment. After completing intra-cluster training, a transmission client (TC) is determined from each cluster to upload a complete model to the base station for global model aggregation under allocated bandwidth. Based on this, an overall training delay cost minimization problem is formulated, which involves the following subproblems: client clustering, MSA, TC selection, and bandwidth allocation. Due to its NP-Hardness, the problem is decoupled and solved iteratively. The client clustering problem is first transformed into a distributed clustering game based on potential game theory, where each cluster further investigates the remaining three subproblems to evaluate the utility of each clustering strategy. Specifically, a heuristic algorithm is proposed to solve the MSA problem under a given clustering strategy, and a greedy-based convex optimization approach is introduced to solve the joint TC selection and bandwidth allocation problem. Finally, we propose an overall algorithm to tackle the joint problem iteratively, to reach a Nash equilibrium. Extensive experiments on practical models and datasets demonstrate that <italic xmlns:mml=http://www.w3.org/1998/Math/MathML xmlns:xlink=http://www.w3.org/1999/xlink>CHEESE</i> can significantly reduce training delay costs, as compared with conventional FL and vanilla SL." @default.
- W4387448210 created "2023-10-10" @default.
- W4387448210 creator A5000584488 @default.
- W4387448210 creator A5019883648 @default.
- W4387448210 creator A5021636395 @default.
- W4387448210 creator A5022058685 @default.
- W4387448210 creator A5041784006 @default.
- W4387448210 creator A5062939941 @default.
- W4387448210 creator A5065443071 @default.
- W4387448210 date "2023-01-01" @default.
- W4387448210 modified "2023-10-11" @default.
- W4387448210 title "CHEESE: Distributed Clustering-Based Hybrid Federated Split Learning Over Edge Networks" @default.
- W4387448210 doi "https://doi.org/10.1109/tpds.2023.3322755" @default.
- W4387448210 hasPublicationYear "2023" @default.
- W4387448210 type Work @default.
- W4387448210 citedByCount "0" @default.
- W4387448210 crossrefType "journal-article" @default.
- W4387448210 hasAuthorship W4387448210A5000584488 @default.
- W4387448210 hasAuthorship W4387448210A5019883648 @default.
- W4387448210 hasAuthorship W4387448210A5021636395 @default.
- W4387448210 hasAuthorship W4387448210A5022058685 @default.
- W4387448210 hasAuthorship W4387448210A5041784006 @default.
- W4387448210 hasAuthorship W4387448210A5062939941 @default.
- W4387448210 hasAuthorship W4387448210A5065443071 @default.
- W4387448210 hasConcept C154945302 @default.
- W4387448210 hasConcept C23123220 @default.
- W4387448210 hasConcept C41008148 @default.
- W4387448210 hasConcept C73555534 @default.
- W4387448210 hasConceptScore W4387448210C154945302 @default.
- W4387448210 hasConceptScore W4387448210C23123220 @default.
- W4387448210 hasConceptScore W4387448210C41008148 @default.
- W4387448210 hasConceptScore W4387448210C73555534 @default.
- W4387448210 hasLocation W43874482101 @default.
- W4387448210 hasOpenAccess W4387448210 @default.
- W4387448210 hasPrimaryLocation W43874482101 @default.
- W4387448210 hasRelatedWork W1596801655 @default.
- W4387448210 hasRelatedWork W2130043461 @default.
- W4387448210 hasRelatedWork W2350741829 @default.
- W4387448210 hasRelatedWork W2358668433 @default.
- W4387448210 hasRelatedWork W2376932109 @default.
- W4387448210 hasRelatedWork W2382290278 @default.
- W4387448210 hasRelatedWork W2390279801 @default.
- W4387448210 hasRelatedWork W2748952813 @default.
- W4387448210 hasRelatedWork W2899084033 @default.
- W4387448210 hasRelatedWork W2530322880 @default.
- W4387448210 isParatext "false" @default.
- W4387448210 isRetracted "false" @default.
- W4387448210 workType "article" @default.