Matches in SemOpenAlex for { <https://semopenalex.org/work/W4387448603> ?p ?o ?g. }
Showing items 1 to 78 of
78
with 100 items per page.
- W4387448603 endingPage "1" @default.
- W4387448603 startingPage "1" @default.
- W4387448603 abstract "In Cooperative Intelligent Transportation Systems (C-ITS) and Connected Automated Vehicles (CAV), accessing multiple users and providing high-precision positioning are both vital. This paper aims to design an efficient deep learning approach to extend current Channel State Information (CSI)-based positioning to Frequency Division Multiple Access (FDMA) mode. In FDMA mode, different users are allocated with different subcarriers, making the user CSI have diverse frequency domain characteristics. The diverse frequency domain characteristics bring huge interference to the neural network for stable position inference, and efficient designs are required to handle this challenge. This paper proposes a novel approach named multi-frequency fusion learning for CSI-based positioning. By first using a shareable method to extract position-related features from CSI on each subcarrier independently and then fusing the obtained features, the designed neural network obtains excellent frequency domain flexibility to cope with the diverse frequency address challenge in FDMA mode. Meanwhile, we provide the feasibility analysis of this learning approach in massive Multiple-Input Multiple-Output (MIMO) systems to ensure its stable application. Based on the architecture of multi-frequency fusion learning, we propose two specific positioning schemes with differentiated designs. One is a Multi-Frequency Ensemble Network (MFENet), which extracts and fuses frequency-independent features to ensure the network is utterly unharmed by the complicated frequency domain characteristics. The other is a Multi-Frequency Cumulative Network (MFCNet), which uses sufficient feature accumulation to achieve high precision positioning. The key performance indices and applications on vehicles are comprehensively compared with popular deep-learning methods. Experiment results show the effectiveness and superiority of the proposed schemes." @default.
- W4387448603 created "2023-10-10" @default.
- W4387448603 creator A5066878475 @default.
- W4387448603 creator A5069404551 @default.
- W4387448603 creator A5070646892 @default.
- W4387448603 creator A5073520140 @default.
- W4387448603 creator A5074436126 @default.
- W4387448603 date "2023-01-01" @default.
- W4387448603 modified "2023-10-15" @default.
- W4387448603 title "Deep Learning Based Multi-User Positioning in Wireless FDMA Cellular Networks" @default.
- W4387448603 doi "https://doi.org/10.1109/jsac.2023.3322799" @default.
- W4387448603 hasPublicationYear "2023" @default.
- W4387448603 type Work @default.
- W4387448603 citedByCount "0" @default.
- W4387448603 crossrefType "journal-article" @default.
- W4387448603 hasAuthorship W4387448603A5066878475 @default.
- W4387448603 hasAuthorship W4387448603A5069404551 @default.
- W4387448603 hasAuthorship W4387448603A5070646892 @default.
- W4387448603 hasAuthorship W4387448603A5073520140 @default.
- W4387448603 hasAuthorship W4387448603A5074436126 @default.
- W4387448603 hasConcept C105795698 @default.
- W4387448603 hasConcept C119857082 @default.
- W4387448603 hasConcept C127162648 @default.
- W4387448603 hasConcept C154945302 @default.
- W4387448603 hasConcept C19118579 @default.
- W4387448603 hasConcept C198329298 @default.
- W4387448603 hasConcept C26517878 @default.
- W4387448603 hasConcept C2776208322 @default.
- W4387448603 hasConcept C2776214188 @default.
- W4387448603 hasConcept C2780598303 @default.
- W4387448603 hasConcept C31972630 @default.
- W4387448603 hasConcept C32022120 @default.
- W4387448603 hasConcept C33923547 @default.
- W4387448603 hasConcept C38652104 @default.
- W4387448603 hasConcept C40409654 @default.
- W4387448603 hasConcept C41008148 @default.
- W4387448603 hasConcept C50644808 @default.
- W4387448603 hasConcept C76155785 @default.
- W4387448603 hasConcept C79403827 @default.
- W4387448603 hasConceptScore W4387448603C105795698 @default.
- W4387448603 hasConceptScore W4387448603C119857082 @default.
- W4387448603 hasConceptScore W4387448603C127162648 @default.
- W4387448603 hasConceptScore W4387448603C154945302 @default.
- W4387448603 hasConceptScore W4387448603C19118579 @default.
- W4387448603 hasConceptScore W4387448603C198329298 @default.
- W4387448603 hasConceptScore W4387448603C26517878 @default.
- W4387448603 hasConceptScore W4387448603C2776208322 @default.
- W4387448603 hasConceptScore W4387448603C2776214188 @default.
- W4387448603 hasConceptScore W4387448603C2780598303 @default.
- W4387448603 hasConceptScore W4387448603C31972630 @default.
- W4387448603 hasConceptScore W4387448603C32022120 @default.
- W4387448603 hasConceptScore W4387448603C33923547 @default.
- W4387448603 hasConceptScore W4387448603C38652104 @default.
- W4387448603 hasConceptScore W4387448603C40409654 @default.
- W4387448603 hasConceptScore W4387448603C41008148 @default.
- W4387448603 hasConceptScore W4387448603C50644808 @default.
- W4387448603 hasConceptScore W4387448603C76155785 @default.
- W4387448603 hasConceptScore W4387448603C79403827 @default.
- W4387448603 hasFunder F4320321001 @default.
- W4387448603 hasFunder F4320335777 @default.
- W4387448603 hasLocation W43874486031 @default.
- W4387448603 hasOpenAccess W4387448603 @default.
- W4387448603 hasPrimaryLocation W43874486031 @default.
- W4387448603 hasRelatedWork W1501039677 @default.
- W4387448603 hasRelatedWork W2006288161 @default.
- W4387448603 hasRelatedWork W2055131418 @default.
- W4387448603 hasRelatedWork W2097993687 @default.
- W4387448603 hasRelatedWork W2131811892 @default.
- W4387448603 hasRelatedWork W2154840600 @default.
- W4387448603 hasRelatedWork W2160442106 @default.
- W4387448603 hasRelatedWork W2306672848 @default.
- W4387448603 hasRelatedWork W3161598161 @default.
- W4387448603 hasRelatedWork W4291701075 @default.
- W4387448603 isParatext "false" @default.
- W4387448603 isRetracted "false" @default.
- W4387448603 workType "article" @default.