Matches in SemOpenAlex for { <https://semopenalex.org/work/W4387450478> ?p ?o ?g. }
- W4387450478 endingPage "11112" @default.
- W4387450478 startingPage "11112" @default.
- W4387450478 abstract "In the realm of retail supply chain management, accurate forecasting is paramount for informed decision making, as it directly impacts business operations and profitability. This study delves into the application of tree-based ensemble forecasting, specifically using extra tree Regressors (ETRs) and long short-term memory (LSTM) networks. Utilizing over six years of historical demand data from a prominent retail entity, the dataset encompasses daily demand metrics for more than 330 products, totaling 5.2 million records. Additionally, external variables, such as meteorological and COVID-19-related data, are integrated into the analysis. Our evaluation, spanning three perishable product categories, reveals that the ETR model outperforms LSTM in metrics including MAPE, MAE, RMSE, and R2. This disparity in performance is particularly pronounced for fresh meat products, whereas it is marginal for fruit products. These ETR results were evaluated alongside three other tree-based ensemble methods, namely XGBoost, Random Forest Regression (RFR), and Gradient Boosting Regression (GBR). The comparable performance across these four tree-based ensemble techniques serves to reinforce their comparative analysis with LSTM-based deep learning models. Our findings pave the way for future studies to assess the comparative efficacy of tree-based ensembles and deep learning techniques across varying forecasting horizons, such as short-, medium-, and long-term predictions." @default.
- W4387450478 created "2023-10-10" @default.
- W4387450478 creator A5024552207 @default.
- W4387450478 creator A5061512287 @default.
- W4387450478 creator A5069432801 @default.
- W4387450478 creator A5075961917 @default.
- W4387450478 date "2023-10-09" @default.
- W4387450478 modified "2023-10-11" @default.
- W4387450478 title "Applying Machine Learning in Retail Demand Prediction—A Comparison of Tree-Based Ensembles and Long Short-Term Memory-Based Deep Learning" @default.
- W4387450478 cites W2056132907 @default.
- W4387450478 cites W2064675550 @default.
- W4387450478 cites W2087016914 @default.
- W4387450478 cites W2094515728 @default.
- W4387450478 cites W2101664201 @default.
- W4387450478 cites W2290581889 @default.
- W4387450478 cites W2550199026 @default.
- W4387450478 cites W2586344229 @default.
- W4387450478 cites W2744982178 @default.
- W4387450478 cites W2753675862 @default.
- W4387450478 cites W2808906432 @default.
- W4387450478 cites W2809923164 @default.
- W4387450478 cites W2907251284 @default.
- W4387450478 cites W2910931863 @default.
- W4387450478 cites W2911964244 @default.
- W4387450478 cites W2944006160 @default.
- W4387450478 cites W2978376430 @default.
- W4387450478 cites W2979950223 @default.
- W4387450478 cites W3012096460 @default.
- W4387450478 cites W3029422813 @default.
- W4387450478 cites W3044853528 @default.
- W4387450478 cites W3097950615 @default.
- W4387450478 cites W3109641554 @default.
- W4387450478 cites W3129637043 @default.
- W4387450478 cites W3141258397 @default.
- W4387450478 cites W3165918022 @default.
- W4387450478 cites W3186625867 @default.
- W4387450478 cites W3207400253 @default.
- W4387450478 cites W388323479 @default.
- W4387450478 cites W4200619741 @default.
- W4387450478 cites W4206189171 @default.
- W4387450478 cites W4207043127 @default.
- W4387450478 cites W4214732065 @default.
- W4387450478 cites W4220792972 @default.
- W4387450478 cites W4226050904 @default.
- W4387450478 cites W4312026766 @default.
- W4387450478 cites W4312295375 @default.
- W4387450478 cites W4317383735 @default.
- W4387450478 cites W4319319155 @default.
- W4387450478 cites W4324149224 @default.
- W4387450478 cites W4362733286 @default.
- W4387450478 cites W4365129846 @default.
- W4387450478 cites W4383553153 @default.
- W4387450478 cites W4385454786 @default.
- W4387450478 cites W4385479556 @default.
- W4387450478 doi "https://doi.org/10.3390/app131911112" @default.
- W4387450478 hasPublicationYear "2023" @default.
- W4387450478 type Work @default.
- W4387450478 citedByCount "0" @default.
- W4387450478 crossrefType "journal-article" @default.
- W4387450478 hasAuthorship W4387450478A5024552207 @default.
- W4387450478 hasAuthorship W4387450478A5061512287 @default.
- W4387450478 hasAuthorship W4387450478A5069432801 @default.
- W4387450478 hasAuthorship W4387450478A5075961917 @default.
- W4387450478 hasBestOaLocation W43874504781 @default.
- W4387450478 hasConcept C10138342 @default.
- W4387450478 hasConcept C108583219 @default.
- W4387450478 hasConcept C113174947 @default.
- W4387450478 hasConcept C119857082 @default.
- W4387450478 hasConcept C124101348 @default.
- W4387450478 hasConcept C129361004 @default.
- W4387450478 hasConcept C134306372 @default.
- W4387450478 hasConcept C154945302 @default.
- W4387450478 hasConcept C162324750 @default.
- W4387450478 hasConcept C169258074 @default.
- W4387450478 hasConcept C33923547 @default.
- W4387450478 hasConcept C41008148 @default.
- W4387450478 hasConcept C45942800 @default.
- W4387450478 hasConcept C46686674 @default.
- W4387450478 hasConcept C84525736 @default.
- W4387450478 hasConceptScore W4387450478C10138342 @default.
- W4387450478 hasConceptScore W4387450478C108583219 @default.
- W4387450478 hasConceptScore W4387450478C113174947 @default.
- W4387450478 hasConceptScore W4387450478C119857082 @default.
- W4387450478 hasConceptScore W4387450478C124101348 @default.
- W4387450478 hasConceptScore W4387450478C129361004 @default.
- W4387450478 hasConceptScore W4387450478C134306372 @default.
- W4387450478 hasConceptScore W4387450478C154945302 @default.
- W4387450478 hasConceptScore W4387450478C162324750 @default.
- W4387450478 hasConceptScore W4387450478C169258074 @default.
- W4387450478 hasConceptScore W4387450478C33923547 @default.
- W4387450478 hasConceptScore W4387450478C41008148 @default.
- W4387450478 hasConceptScore W4387450478C45942800 @default.
- W4387450478 hasConceptScore W4387450478C46686674 @default.
- W4387450478 hasConceptScore W4387450478C84525736 @default.
- W4387450478 hasIssue "19" @default.
- W4387450478 hasLocation W43874504781 @default.
- W4387450478 hasOpenAccess W4387450478 @default.
- W4387450478 hasPrimaryLocation W43874504781 @default.