Matches in SemOpenAlex for { <https://semopenalex.org/work/W4387451874> ?p ?o ?g. }
- W4387451874 endingPage "2022" @default.
- W4387451874 startingPage "2022" @default.
- W4387451874 abstract "Crown width (CW) is an important indicator for assessing tree health, vitality, and stability, as well as being used to predict forestry models and evaluate forest dynamics. However, acquiring CW data is laborious and time-consuming, making it crucial to establish a convenient and accurate CW prediction model for forest management. In this study, we developed three models capable of conducting calibration: generalized models (GM), quantile regression models (QR), and mixed-effects models (MIXED). The aim was to effectively improve the prediction accuracy of CW using data from Dahurian larch (Larix gmelinii Rupr.) in Northeastern China. Different sampling designs were applied, including selecting the thickest, thinnest, intermediate, and random trees, with 1 to 10 sample trees for each design. The results showed that all models achieved accurate CW predictions. MIXED displayed the most superior fitting statistics than GM and QR. In model validation, with the increase in the number of sample trees, the model prediction accuracy gradually improved and the model differences gradually reduced. MIXED produced the smallest RMSE, MAE, and MAPE across all sampling designs. The intermediate tree sampling design with the best validation statistics for the given sample size was selected as the final sampling design. Under intermediate tree sampling design, MIXED required a minimum of five sample trees, while GM and QR required at least five and six sample trees for calibration, respectively. Generally, we suggested selecting MIXED as the final CW prediction model and using the intermediate tree sampling design of five trees per plot. This study could provide ideas and support for forest managers to accurately and efficiently predict CW." @default.
- W4387451874 created "2023-10-10" @default.
- W4387451874 creator A5017507323 @default.
- W4387451874 creator A5048878220 @default.
- W4387451874 creator A5048989648 @default.
- W4387451874 date "2023-10-09" @default.
- W4387451874 modified "2023-10-11" @default.
- W4387451874 title "Assessment of Potential Prediction and Calibration Methods of Crown Width for Dahurian Larch (Larix gmelinii Rupr.) in Northeastern China" @default.
- W4387451874 cites W15349034 @default.
- W4387451874 cites W1990736435 @default.
- W4387451874 cites W1993147091 @default.
- W4387451874 cites W2001726830 @default.
- W4387451874 cites W2007033047 @default.
- W4387451874 cites W2011269577 @default.
- W4387451874 cites W2011401736 @default.
- W4387451874 cites W2014681113 @default.
- W4387451874 cites W2015160293 @default.
- W4387451874 cites W2026052162 @default.
- W4387451874 cites W2032882229 @default.
- W4387451874 cites W2034401629 @default.
- W4387451874 cites W2040966598 @default.
- W4387451874 cites W2044904134 @default.
- W4387451874 cites W2045211767 @default.
- W4387451874 cites W2050020189 @default.
- W4387451874 cites W2061509940 @default.
- W4387451874 cites W2101464256 @default.
- W4387451874 cites W2107494260 @default.
- W4387451874 cites W2140911091 @default.
- W4387451874 cites W2166960293 @default.
- W4387451874 cites W2167239677 @default.
- W4387451874 cites W2168053022 @default.
- W4387451874 cites W2168302836 @default.
- W4387451874 cites W2277579754 @default.
- W4387451874 cites W2328493971 @default.
- W4387451874 cites W2418109741 @default.
- W4387451874 cites W2503161859 @default.
- W4387451874 cites W2576700356 @default.
- W4387451874 cites W2607828290 @default.
- W4387451874 cites W2612077403 @default.
- W4387451874 cites W2614064565 @default.
- W4387451874 cites W2742478052 @default.
- W4387451874 cites W2751275235 @default.
- W4387451874 cites W2776415808 @default.
- W4387451874 cites W2810919118 @default.
- W4387451874 cites W2896206172 @default.
- W4387451874 cites W2925272954 @default.
- W4387451874 cites W2946545385 @default.
- W4387451874 cites W3002468136 @default.
- W4387451874 cites W3011431117 @default.
- W4387451874 cites W3013872530 @default.
- W4387451874 cites W3042740683 @default.
- W4387451874 cites W3109733097 @default.
- W4387451874 cites W3153211115 @default.
- W4387451874 cites W3154002892 @default.
- W4387451874 cites W3161622342 @default.
- W4387451874 cites W3162634215 @default.
- W4387451874 cites W3183109142 @default.
- W4387451874 cites W3198753477 @default.
- W4387451874 cites W3200716154 @default.
- W4387451874 cites W4206439534 @default.
- W4387451874 cites W4206510671 @default.
- W4387451874 cites W4213428772 @default.
- W4387451874 cites W4241653265 @default.
- W4387451874 cites W4284963389 @default.
- W4387451874 cites W4285007535 @default.
- W4387451874 cites W4285593947 @default.
- W4387451874 cites W4308156963 @default.
- W4387451874 cites W4309553685 @default.
- W4387451874 cites W658355089 @default.
- W4387451874 doi "https://doi.org/10.3390/f14102022" @default.
- W4387451874 hasPublicationYear "2023" @default.
- W4387451874 type Work @default.
- W4387451874 citedByCount "0" @default.
- W4387451874 crossrefType "journal-article" @default.
- W4387451874 hasAuthorship W4387451874A5017507323 @default.
- W4387451874 hasAuthorship W4387451874A5048878220 @default.
- W4387451874 hasAuthorship W4387451874A5048989648 @default.
- W4387451874 hasBestOaLocation W43874518741 @default.
- W4387451874 hasConcept C105795698 @default.
- W4387451874 hasConcept C106131492 @default.
- W4387451874 hasConcept C113174947 @default.
- W4387451874 hasConcept C129848803 @default.
- W4387451874 hasConcept C134306372 @default.
- W4387451874 hasConcept C139945424 @default.
- W4387451874 hasConcept C140779682 @default.
- W4387451874 hasConcept C144024400 @default.
- W4387451874 hasConcept C149923435 @default.
- W4387451874 hasConcept C165838908 @default.
- W4387451874 hasConcept C185592680 @default.
- W4387451874 hasConcept C18903297 @default.
- W4387451874 hasConcept C198531522 @default.
- W4387451874 hasConcept C199343813 @default.
- W4387451874 hasConcept C2778400979 @default.
- W4387451874 hasConcept C2778551664 @default.
- W4387451874 hasConcept C2779620276 @default.
- W4387451874 hasConcept C2908647359 @default.
- W4387451874 hasConcept C31972630 @default.
- W4387451874 hasConcept C33923547 @default.