Matches in SemOpenAlex for { <https://semopenalex.org/work/W4387452997> ?p ?o ?g. }
- W4387452997 abstract "Recently, methods of graph neural networks (GNNs) have been applied to solving the problems in high-energy physics (HEP) and have shown its great potential for quark-gluon tagging with graph representation of jet events. In this paper, we introduce an approach of GNNs combined with a Haar pooling operation to analyze the events, called Haar pooling message passing neural network (HMPNet). In HMPNet, Haar pooling not only extracts the features of graph, but embeds additional information obtained by clustering of $k$ means of different particle features. We construct Haar pooling from five different features: absolute energy $mathrm{log}E$, transverse momentum $mathrm{log}{p}_{T}$, relative coordinates $(mathrm{ensuremath{Delta}}ensuremath{eta},mathrm{ensuremath{Delta}}ensuremath{phi})$, the mixed ones $(mathrm{log}E,mathrm{log}{p}_{T})$, and $(mathrm{log}E,mathrm{log}{p}_{T},mathrm{ensuremath{Delta}}ensuremath{eta},mathrm{ensuremath{Delta}}ensuremath{phi})$. The results show that an appropriate selection of information for Haar pooling enhances the accuracy of quark-gluon tagging, as adding extra information of $mathrm{log}{P}_{T}$ to the HMPNet outperforms all the others, whereas adding relative coordinates information $(mathrm{ensuremath{Delta}}ensuremath{eta},mathrm{ensuremath{Delta}}ensuremath{phi})$ is not very effective. This implies that, by adding effective particle features from Haar pooling, one can achieve much better results than that which a solely pure message passing neutral network can do, which demonstrates significant improvement of feature extraction via the pooling process. Finally, we compare the HMPNet study, ordering by ${p}_{T}$, with other studies and prove that the HMPNet is also a good choice of GNN algorithms for jet tagging." @default.
- W4387452997 created "2023-10-10" @default.
- W4387452997 creator A5000432967 @default.
- W4387452997 creator A5040465921 @default.
- W4387452997 creator A5091474712 @default.
- W4387452997 date "2023-10-09" @default.
- W4387452997 modified "2023-10-15" @default.
- W4387452997 title "Jet tagging algorithm of graph network with Haar pooling message passing" @default.
- W4387452997 cites W1541193715 @default.
- W4387452997 cites W1652336819 @default.
- W4387452997 cites W1841093778 @default.
- W4387452997 cites W2014327027 @default.
- W4387452997 cites W2040153696 @default.
- W4387452997 cites W2106540986 @default.
- W4387452997 cites W2116232996 @default.
- W4387452997 cites W2125102738 @default.
- W4387452997 cites W2136749405 @default.
- W4387452997 cites W2162496521 @default.
- W4387452997 cites W2194775991 @default.
- W4387452997 cites W2258584306 @default.
- W4387452997 cites W2269829830 @default.
- W4387452997 cites W2325907229 @default.
- W4387452997 cites W2491766731 @default.
- W4387452997 cites W2498183379 @default.
- W4387452997 cites W2512944313 @default.
- W4387452997 cites W2550917747 @default.
- W4387452997 cites W2604487509 @default.
- W4387452997 cites W2606891456 @default.
- W4387452997 cites W2624881227 @default.
- W4387452997 cites W2896693058 @default.
- W4387452997 cites W2908715903 @default.
- W4387452997 cites W2915621743 @default.
- W4387452997 cites W2916639378 @default.
- W4387452997 cites W2965771657 @default.
- W4387452997 cites W2967177183 @default.
- W4387452997 cites W2999026142 @default.
- W4387452997 cites W3002851826 @default.
- W4387452997 cites W3098229010 @default.
- W4387452997 cites W3099190102 @default.
- W4387452997 cites W3100634322 @default.
- W4387452997 cites W3101501459 @default.
- W4387452997 cites W3101538771 @default.
- W4387452997 cites W3101867861 @default.
- W4387452997 cites W3102719046 @default.
- W4387452997 cites W3104023534 @default.
- W4387452997 cites W3104561293 @default.
- W4387452997 cites W3104674222 @default.
- W4387452997 cites W3105497058 @default.
- W4387452997 cites W3105797459 @default.
- W4387452997 cites W3107928239 @default.
- W4387452997 cites W3121614399 @default.
- W4387452997 cites W3122379510 @default.
- W4387452997 cites W3122543598 @default.
- W4387452997 cites W3125132074 @default.
- W4387452997 cites W3134779028 @default.
- W4387452997 cites W3194947106 @default.
- W4387452997 cites W3206568895 @default.
- W4387452997 cites W4221140049 @default.
- W4387452997 cites W4226150389 @default.
- W4387452997 cites W4283451466 @default.
- W4387452997 cites W4286698778 @default.
- W4387452997 doi "https://doi.org/10.1103/physrevd.108.072007" @default.
- W4387452997 hasPublicationYear "2023" @default.
- W4387452997 type Work @default.
- W4387452997 citedByCount "0" @default.
- W4387452997 crossrefType "journal-article" @default.
- W4387452997 hasAuthorship W4387452997A5000432967 @default.
- W4387452997 hasAuthorship W4387452997A5040465921 @default.
- W4387452997 hasAuthorship W4387452997A5091474712 @default.
- W4387452997 hasBestOaLocation W43874529971 @default.
- W4387452997 hasConcept C10138342 @default.
- W4387452997 hasConcept C109214941 @default.
- W4387452997 hasConcept C11413529 @default.
- W4387452997 hasConcept C114614502 @default.
- W4387452997 hasConcept C118615104 @default.
- W4387452997 hasConcept C121332964 @default.
- W4387452997 hasConcept C154945302 @default.
- W4387452997 hasConcept C162324750 @default.
- W4387452997 hasConcept C182306322 @default.
- W4387452997 hasConcept C186370098 @default.
- W4387452997 hasConcept C187029792 @default.
- W4387452997 hasConcept C33923547 @default.
- W4387452997 hasConcept C41008148 @default.
- W4387452997 hasConcept C47432892 @default.
- W4387452997 hasConcept C62520636 @default.
- W4387452997 hasConcept C70437156 @default.
- W4387452997 hasConceptScore W4387452997C10138342 @default.
- W4387452997 hasConceptScore W4387452997C109214941 @default.
- W4387452997 hasConceptScore W4387452997C11413529 @default.
- W4387452997 hasConceptScore W4387452997C114614502 @default.
- W4387452997 hasConceptScore W4387452997C118615104 @default.
- W4387452997 hasConceptScore W4387452997C121332964 @default.
- W4387452997 hasConceptScore W4387452997C154945302 @default.
- W4387452997 hasConceptScore W4387452997C162324750 @default.
- W4387452997 hasConceptScore W4387452997C182306322 @default.
- W4387452997 hasConceptScore W4387452997C186370098 @default.
- W4387452997 hasConceptScore W4387452997C187029792 @default.
- W4387452997 hasConceptScore W4387452997C33923547 @default.
- W4387452997 hasConceptScore W4387452997C41008148 @default.
- W4387452997 hasConceptScore W4387452997C47432892 @default.