Matches in SemOpenAlex for { <https://semopenalex.org/work/W4387454890> ?p ?o ?g. }
- W4387454890 endingPage "121969" @default.
- W4387454890 startingPage "121969" @default.
- W4387454890 abstract "With the rapid growth of Internet data, recommendation systems have become the basic technology to alleviate information overload. The session-based recommendation (SBR) is a challenging task, and its purpose is to predict user behavior based on anonymous sessions. The existing SBR methods need to be improved in capturing the complex conversion relationship of items. In contrast, Graph Neural Network (GNN) can capture the complex conversion between items by modeling sessions as graph structure data. However, current methods just sort the clicked items within a session based on time, without utilizing the temporal information between sessions, leading to poor recommendation performance. To improve the accuracy of session recommendation (SR), we propose an SBR model based on GNN with Combined Temporal (CT-GNN) information. The proposed CT-GNN model is built based on the time of session occurrence, and it can learn the temporal association relationship between session items to enrich the connection between items. More importantly, based on the diversity problem faced by current SRs, which refers to the tendency of users to engage with popular items and resulting in limited exposure for other items, the CT-GNN model uses the Local Item Representation Learning (LIRL) module to learn users' local preferences. Through the LIRL module, the CT-GNN can capture users' interests, boost item exposure, and increase recommendation diversity. The experimental results show that the CT-GNN model is superior to the state-of-the-art SBR methods, with MRR scores 1.1%∼3.4% higher than the best-performing baseline; recall scores 0.9%∼2.3% higher than the best-performing baseline, and alleviates the diversity problem faced by SR, greatly improving the speed of model convergence, and the training time is 13.6%∼20.7% of the best-performing baseline." @default.
- W4387454890 created "2023-10-10" @default.
- W4387454890 creator A5012104040 @default.
- W4387454890 creator A5015242847 @default.
- W4387454890 creator A5035742417 @default.
- W4387454890 creator A5058561724 @default.
- W4387454890 creator A5068597980 @default.
- W4387454890 creator A5087333350 @default.
- W4387454890 date "2024-03-01" @default.
- W4387454890 modified "2023-10-17" @default.
- W4387454890 title "Combine Temporal Information in Session-based Recommendation with Graph Neural Networks" @default.
- W4387454890 cites W1989318262 @default.
- W4387454890 cites W2040367556 @default.
- W4387454890 cites W2089885143 @default.
- W4387454890 cites W2125690904 @default.
- W4387454890 cites W2390938437 @default.
- W4387454890 cites W2626454364 @default.
- W4387454890 cites W2783272285 @default.
- W4387454890 cites W2809112621 @default.
- W4387454890 cites W2809307135 @default.
- W4387454890 cites W2953831886 @default.
- W4387454890 cites W2964044287 @default.
- W4387454890 cites W2964926209 @default.
- W4387454890 cites W2986186789 @default.
- W4387454890 cites W2988434966 @default.
- W4387454890 cites W2996931760 @default.
- W4387454890 cites W3014967775 @default.
- W4387454890 cites W3031469573 @default.
- W4387454890 cites W3098231197 @default.
- W4387454890 cites W3104097132 @default.
- W4387454890 cites W3105705953 @default.
- W4387454890 cites W3176749666 @default.
- W4387454890 cites W3177348518 @default.
- W4387454890 cites W4206257823 @default.
- W4387454890 cites W4224326026 @default.
- W4387454890 cites W4226272098 @default.
- W4387454890 cites W4289751797 @default.
- W4387454890 cites W4290058700 @default.
- W4387454890 cites W4296640362 @default.
- W4387454890 cites W4297524057 @default.
- W4387454890 cites W4310802579 @default.
- W4387454890 cites W4385484617 @default.
- W4387454890 doi "https://doi.org/10.1016/j.eswa.2023.121969" @default.
- W4387454890 hasPublicationYear "2024" @default.
- W4387454890 type Work @default.
- W4387454890 citedByCount "0" @default.
- W4387454890 crossrefType "journal-article" @default.
- W4387454890 hasAuthorship W4387454890A5012104040 @default.
- W4387454890 hasAuthorship W4387454890A5015242847 @default.
- W4387454890 hasAuthorship W4387454890A5035742417 @default.
- W4387454890 hasAuthorship W4387454890A5058561724 @default.
- W4387454890 hasAuthorship W4387454890A5068597980 @default.
- W4387454890 hasAuthorship W4387454890A5087333350 @default.
- W4387454890 hasConcept C100660578 @default.
- W4387454890 hasConcept C110875604 @default.
- W4387454890 hasConcept C119857082 @default.
- W4387454890 hasConcept C124101348 @default.
- W4387454890 hasConcept C132525143 @default.
- W4387454890 hasConcept C136764020 @default.
- W4387454890 hasConcept C138885662 @default.
- W4387454890 hasConcept C154945302 @default.
- W4387454890 hasConcept C186625053 @default.
- W4387454890 hasConcept C23123220 @default.
- W4387454890 hasConcept C2779182362 @default.
- W4387454890 hasConcept C41008148 @default.
- W4387454890 hasConcept C41895202 @default.
- W4387454890 hasConcept C557471498 @default.
- W4387454890 hasConcept C80444323 @default.
- W4387454890 hasConcept C88548561 @default.
- W4387454890 hasConceptScore W4387454890C100660578 @default.
- W4387454890 hasConceptScore W4387454890C110875604 @default.
- W4387454890 hasConceptScore W4387454890C119857082 @default.
- W4387454890 hasConceptScore W4387454890C124101348 @default.
- W4387454890 hasConceptScore W4387454890C132525143 @default.
- W4387454890 hasConceptScore W4387454890C136764020 @default.
- W4387454890 hasConceptScore W4387454890C138885662 @default.
- W4387454890 hasConceptScore W4387454890C154945302 @default.
- W4387454890 hasConceptScore W4387454890C186625053 @default.
- W4387454890 hasConceptScore W4387454890C23123220 @default.
- W4387454890 hasConceptScore W4387454890C2779182362 @default.
- W4387454890 hasConceptScore W4387454890C41008148 @default.
- W4387454890 hasConceptScore W4387454890C41895202 @default.
- W4387454890 hasConceptScore W4387454890C557471498 @default.
- W4387454890 hasConceptScore W4387454890C80444323 @default.
- W4387454890 hasConceptScore W4387454890C88548561 @default.
- W4387454890 hasLocation W43874548901 @default.
- W4387454890 hasOpenAccess W4387454890 @default.
- W4387454890 hasPrimaryLocation W43874548901 @default.
- W4387454890 hasRelatedWork W1549403601 @default.
- W4387454890 hasRelatedWork W1575740715 @default.
- W4387454890 hasRelatedWork W1599110641 @default.
- W4387454890 hasRelatedWork W2078352417 @default.
- W4387454890 hasRelatedWork W2418053903 @default.
- W4387454890 hasRelatedWork W2497510784 @default.
- W4387454890 hasRelatedWork W2787177576 @default.
- W4387454890 hasRelatedWork W4200403046 @default.
- W4387454890 hasRelatedWork W4251329182 @default.
- W4387454890 hasRelatedWork W4252183363 @default.