Matches in SemOpenAlex for { <https://semopenalex.org/work/W4387454961> ?p ?o ?g. }
- W4387454961 endingPage "4857" @default.
- W4387454961 startingPage "4857" @default.
- W4387454961 abstract "The vegetation cover of forests and grasslands in mountain regions plays a crucial role in regulating climate at both regional and global scales. Thus, it is necessary to develop accurate methods for estimating and monitoring fractional vegetation cover (FVC) in mountain areas. However, the complex topographic and climate factors pose significant challenges to accurately estimating the FVC of mountain forests and grassland. Existing remote sensing products, FVC retrieval methods, and FVC samples may fail to meet the required accuracy standards. In this study, we propose a method based on spatio-temporal transfer learning for the retrieval of FVC in mountain forests and grasslands, using the mountain region of Huzhu County, Qinghai Province, as the study area. The method combines simulated FVC samples, Sentinel-2 images, and mountain topographic factor data to pre-train LSTM and 1DCNN models and subsequently transfer the models to HJ-2A/B remote sensing images. The results of the study indicated the following: (1) The FVC samples generated by the proposed method (R2 = 0.7536, RMSE = 0.0596) are more accurate than those generated by the dichotomy method (R2 = 0.4997, RMSE = 0.1060) based on validation with ground truth data. (2) The LSTM model performed better than the 1DCNN model: the average R2 of the two models was 0.9275 and 0.8955; the average RMSE was 0.0653 and 0.0735. (3) Topographic features have a significant impact on FVC retrieval results, particularly in relatively high-altitude mountain regions (DEM > 3000 m) or non-growing seasons (May and October). Therefore, the proposed method has better potential in FVC fine spatio-temporal retrieval of high-resolution mountainous remote sensing images." @default.
- W4387454961 created "2023-10-10" @default.
- W4387454961 creator A5002523826 @default.
- W4387454961 creator A5005373227 @default.
- W4387454961 creator A5013658349 @default.
- W4387454961 creator A5016044884 @default.
- W4387454961 creator A5019708503 @default.
- W4387454961 creator A5071056748 @default.
- W4387454961 creator A5079570262 @default.
- W4387454961 creator A5087629646 @default.
- W4387454961 date "2023-10-07" @default.
- W4387454961 modified "2023-10-11" @default.
- W4387454961 title "The Retrieval of Forest and Grass Fractional Vegetation Coverage in Mountain Regions Based on Spatio-Temporal Transfer Learning" @default.
- W4387454961 cites W1631987184 @default.
- W4387454961 cites W1967395374 @default.
- W4387454961 cites W1971263100 @default.
- W4387454961 cites W1973058638 @default.
- W4387454961 cites W1974047452 @default.
- W4387454961 cites W1977377474 @default.
- W4387454961 cites W1981027802 @default.
- W4387454961 cites W1981968821 @default.
- W4387454961 cites W1988998717 @default.
- W4387454961 cites W2000102737 @default.
- W4387454961 cites W2000613913 @default.
- W4387454961 cites W2010581112 @default.
- W4387454961 cites W2012645261 @default.
- W4387454961 cites W2012852156 @default.
- W4387454961 cites W2014912124 @default.
- W4387454961 cites W2043273487 @default.
- W4387454961 cites W2045422717 @default.
- W4387454961 cites W2064675550 @default.
- W4387454961 cites W2068492232 @default.
- W4387454961 cites W2073100112 @default.
- W4387454961 cites W2074101659 @default.
- W4387454961 cites W2097492507 @default.
- W4387454961 cites W2111807174 @default.
- W4387454961 cites W2113410727 @default.
- W4387454961 cites W2121025745 @default.
- W4387454961 cites W2128285178 @default.
- W4387454961 cites W2159220909 @default.
- W4387454961 cites W2165698076 @default.
- W4387454961 cites W2247529345 @default.
- W4387454961 cites W2253429366 @default.
- W4387454961 cites W2291961022 @default.
- W4387454961 cites W2298583252 @default.
- W4387454961 cites W2337542812 @default.
- W4387454961 cites W2395579298 @default.
- W4387454961 cites W2752158926 @default.
- W4387454961 cites W2809537360 @default.
- W4387454961 cites W2830085693 @default.
- W4387454961 cites W2901791811 @default.
- W4387454961 cites W2904765917 @default.
- W4387454961 cites W2988632115 @default.
- W4387454961 cites W2995363336 @default.
- W4387454961 cites W2999420346 @default.
- W4387454961 cites W2999615587 @default.
- W4387454961 cites W3037796385 @default.
- W4387454961 cites W3043213732 @default.
- W4387454961 cites W3049282503 @default.
- W4387454961 cites W3090679658 @default.
- W4387454961 cites W3111174758 @default.
- W4387454961 cites W3124539583 @default.
- W4387454961 cites W3164809178 @default.
- W4387454961 cites W3173833413 @default.
- W4387454961 cites W3203394296 @default.
- W4387454961 cites W3206566335 @default.
- W4387454961 cites W3216831469 @default.
- W4387454961 cites W4283030270 @default.
- W4387454961 cites W4293207334 @default.
- W4387454961 cites W4293222002 @default.
- W4387454961 cites W4293661237 @default.
- W4387454961 cites W4322501832 @default.
- W4387454961 doi "https://doi.org/10.3390/rs15194857" @default.
- W4387454961 hasPublicationYear "2023" @default.
- W4387454961 type Work @default.
- W4387454961 citedByCount "0" @default.
- W4387454961 crossrefType "journal-article" @default.
- W4387454961 hasAuthorship W4387454961A5002523826 @default.
- W4387454961 hasAuthorship W4387454961A5005373227 @default.
- W4387454961 hasAuthorship W4387454961A5013658349 @default.
- W4387454961 hasAuthorship W4387454961A5016044884 @default.
- W4387454961 hasAuthorship W4387454961A5019708503 @default.
- W4387454961 hasAuthorship W4387454961A5071056748 @default.
- W4387454961 hasAuthorship W4387454961A5079570262 @default.
- W4387454961 hasAuthorship W4387454961A5087629646 @default.
- W4387454961 hasBestOaLocation W43874549611 @default.
- W4387454961 hasConcept C100970517 @default.
- W4387454961 hasConcept C105795698 @default.
- W4387454961 hasConcept C119857082 @default.
- W4387454961 hasConcept C139945424 @default.
- W4387454961 hasConcept C142724271 @default.
- W4387454961 hasConcept C146849305 @default.
- W4387454961 hasConcept C169258074 @default.
- W4387454961 hasConcept C18903297 @default.
- W4387454961 hasConcept C205649164 @default.
- W4387454961 hasConcept C2775835988 @default.
- W4387454961 hasConcept C2776133958 @default.
- W4387454961 hasConcept C2780648208 @default.