Matches in SemOpenAlex for { <https://semopenalex.org/work/W4387455766> ?p ?o ?g. }
Showing items 1 to 75 of
75
with 100 items per page.
- W4387455766 endingPage "184" @default.
- W4387455766 startingPage "173" @default.
- W4387455766 abstract "To enhance the human-robot interaction ability of a lower-limb rehabilitation robot for stroke patients, it is crucial to accurately quantify the rehabilitation status. This paper proposes an adaptive rehabilitation assessment approach based on a Takagi-Sugeno (T-S) fuzzy neural network aided by a multi-signal acquisition platform. By extracting five kinematic data and electromyographic (EMG) data of clinical rehabilitation training, the method obtains the lower limb characteristic parameters of patients to simulate the rehabilitation evaluation process. The multi-factor line regression method evaluates the impact of maximum joint activity, free acceleration, angular acceleration, average velocity, jerk, and EMG signal data on the evaluation results. The mapping between rehabilitation feature metrics and recovery conditions is initially estimated using a T-S fuzzy neural network. The paper then proposes a hybrid optimization learning method for the above network, which includes particle swarm optimization (PSO) and recursive least squares estimator (RLSE). PSO modifies the function parameters used to calculate the membership degree to optimize the fitness of fuzzy rules. However, the PSO algorithm can easily trap into local optima, so the freedom coefficient that calculates the consequent of fuzzy rules is further corrected based on RLSE. The iterative learning of the T-S fuzzy neural network is completed using gradient descent. Finally, the proposed approach is compared for convergence efficiency with two intelligent algorithms, and the results demonstrate the proposed network’s excellent convergence performance and high model accuracy (RMSE = 2.336 $$times $$ 10 $$^{-3}$$ ), which is essential for lower-limb rehabilitation." @default.
- W4387455766 created "2023-10-10" @default.
- W4387455766 creator A5004327895 @default.
- W4387455766 creator A5010245248 @default.
- W4387455766 creator A5060107207 @default.
- W4387455766 creator A5084336869 @default.
- W4387455766 creator A5088723765 @default.
- W4387455766 date "2023-01-01" @default.
- W4387455766 modified "2023-10-11" @default.
- W4387455766 title "The Application of Hybrid Dynamic Recurrent Fuzzy Neural Network in Lower Limb Rehabilitation Function Evaluation" @default.
- W4387455766 cites W2907937715 @default.
- W4387455766 cites W2935948187 @default.
- W4387455766 cites W3011494555 @default.
- W4387455766 cites W3036196415 @default.
- W4387455766 cites W3047075276 @default.
- W4387455766 cites W3083883212 @default.
- W4387455766 cites W3127205523 @default.
- W4387455766 cites W4200474236 @default.
- W4387455766 cites W4205234192 @default.
- W4387455766 cites W4212854663 @default.
- W4387455766 cites W4214930077 @default.
- W4387455766 cites W4307425036 @default.
- W4387455766 cites W4307892472 @default.
- W4387455766 cites W4308119944 @default.
- W4387455766 cites W4308554779 @default.
- W4387455766 doi "https://doi.org/10.1007/978-981-99-6486-4_15" @default.
- W4387455766 hasPublicationYear "2023" @default.
- W4387455766 type Work @default.
- W4387455766 citedByCount "0" @default.
- W4387455766 crossrefType "book-chapter" @default.
- W4387455766 hasAuthorship W4387455766A5004327895 @default.
- W4387455766 hasAuthorship W4387455766A5010245248 @default.
- W4387455766 hasAuthorship W4387455766A5060107207 @default.
- W4387455766 hasAuthorship W4387455766A5084336869 @default.
- W4387455766 hasAuthorship W4387455766A5088723765 @default.
- W4387455766 hasConcept C117896860 @default.
- W4387455766 hasConcept C119857082 @default.
- W4387455766 hasConcept C121332964 @default.
- W4387455766 hasConcept C153258448 @default.
- W4387455766 hasConcept C154945302 @default.
- W4387455766 hasConcept C190704821 @default.
- W4387455766 hasConcept C41008148 @default.
- W4387455766 hasConcept C50644808 @default.
- W4387455766 hasConcept C58166 @default.
- W4387455766 hasConcept C74650414 @default.
- W4387455766 hasConcept C85617194 @default.
- W4387455766 hasConceptScore W4387455766C117896860 @default.
- W4387455766 hasConceptScore W4387455766C119857082 @default.
- W4387455766 hasConceptScore W4387455766C121332964 @default.
- W4387455766 hasConceptScore W4387455766C153258448 @default.
- W4387455766 hasConceptScore W4387455766C154945302 @default.
- W4387455766 hasConceptScore W4387455766C190704821 @default.
- W4387455766 hasConceptScore W4387455766C41008148 @default.
- W4387455766 hasConceptScore W4387455766C50644808 @default.
- W4387455766 hasConceptScore W4387455766C58166 @default.
- W4387455766 hasConceptScore W4387455766C74650414 @default.
- W4387455766 hasConceptScore W4387455766C85617194 @default.
- W4387455766 hasLocation W43874557661 @default.
- W4387455766 hasOpenAccess W4387455766 @default.
- W4387455766 hasPrimaryLocation W43874557661 @default.
- W4387455766 hasRelatedWork W2027275398 @default.
- W4387455766 hasRelatedWork W2084330080 @default.
- W4387455766 hasRelatedWork W2108552309 @default.
- W4387455766 hasRelatedWork W2275557598 @default.
- W4387455766 hasRelatedWork W2329650644 @default.
- W4387455766 hasRelatedWork W2351426540 @default.
- W4387455766 hasRelatedWork W2366940937 @default.
- W4387455766 hasRelatedWork W2370252541 @default.
- W4387455766 hasRelatedWork W3170809905 @default.
- W4387455766 hasRelatedWork W845993790 @default.
- W4387455766 isParatext "false" @default.
- W4387455766 isRetracted "false" @default.
- W4387455766 workType "book-chapter" @default.