Matches in SemOpenAlex for { <https://semopenalex.org/work/W4387456510> ?p ?o ?g. }
Showing items 1 to 90 of
90
with 100 items per page.
- W4387456510 endingPage "16" @default.
- W4387456510 startingPage "1" @default.
- W4387456510 abstract "Power quality disturbances (PQDs) can lead to significant operational and financial losses in power systems. Accurate detection and classification of PQDs are essential for maintaining power quality and preventing power system failures. This research article introduces an innovative approach for the precise detection and classification of single- and multiple-state power quality disturbances (PQDs) using the Stockwell transform (ST) and a random forest classifier. To create realistic PQD signals, seventeen distinct classes are generated in accordance with IEEE Standard 1159, employing mathematical equations implemented in MATLAB software. The ST is employed to extract relevant features from the PQD signals, which are subsequently utilized as input for the random forest classifier. The classifier employs bootstrapping sampling to generate multiple training sets from the original dataset. Each training set is used to construct a decision tree by recursively partitioning the data based on significant features. To mitigate overfitting and enhance robustness, a random subset of features is selected at each node of the decision tree, thereby reducing tree correlation. The performance of the random forest classifier is compared with other widely utilized machine learning classifiers. The results exhibit the efficacy of the proposed approach in accurately detecting and classifying PQ events, highlighting its superiority over alternative methods." @default.
- W4387456510 created "2023-10-10" @default.
- W4387456510 creator A5013466965 @default.
- W4387456510 creator A5013603692 @default.
- W4387456510 creator A5018117682 @default.
- W4387456510 creator A5039320264 @default.
- W4387456510 date "2023-10-07" @default.
- W4387456510 modified "2023-10-11" @default.
- W4387456510 title "Utilization of Stockwell Transform and Random Forest Algorithm for Efficient Detection and Classification of Power Quality Disturbances" @default.
- W4387456510 cites W1968851382 @default.
- W4387456510 cites W2017867711 @default.
- W4387456510 cites W2019971481 @default.
- W4387456510 cites W2020997493 @default.
- W4387456510 cites W2047077950 @default.
- W4387456510 cites W2113242816 @default.
- W4387456510 cites W2142827986 @default.
- W4387456510 cites W2145487065 @default.
- W4387456510 cites W2279982972 @default.
- W4387456510 cites W2461851250 @default.
- W4387456510 cites W2498659883 @default.
- W4387456510 cites W2500580066 @default.
- W4387456510 cites W2622961176 @default.
- W4387456510 cites W2756144590 @default.
- W4387456510 cites W2766865373 @default.
- W4387456510 cites W2792288562 @default.
- W4387456510 cites W2889695092 @default.
- W4387456510 cites W2911315707 @default.
- W4387456510 cites W2923577799 @default.
- W4387456510 cites W2994731359 @default.
- W4387456510 cites W3021670844 @default.
- W4387456510 cites W3043447579 @default.
- W4387456510 cites W3047940729 @default.
- W4387456510 cites W3096474030 @default.
- W4387456510 cites W4200127757 @default.
- W4387456510 cites W4224062894 @default.
- W4387456510 cites W4281287953 @default.
- W4387456510 cites W4283524761 @default.
- W4387456510 cites W4290720660 @default.
- W4387456510 cites W4303043664 @default.
- W4387456510 cites W4308434025 @default.
- W4387456510 cites W4380684494 @default.
- W4387456510 doi "https://doi.org/10.1155/2023/6615662" @default.
- W4387456510 hasPublicationYear "2023" @default.
- W4387456510 type Work @default.
- W4387456510 citedByCount "0" @default.
- W4387456510 crossrefType "journal-article" @default.
- W4387456510 hasAuthorship W4387456510A5013466965 @default.
- W4387456510 hasAuthorship W4387456510A5013603692 @default.
- W4387456510 hasAuthorship W4387456510A5018117682 @default.
- W4387456510 hasAuthorship W4387456510A5039320264 @default.
- W4387456510 hasBestOaLocation W43874565101 @default.
- W4387456510 hasConcept C119857082 @default.
- W4387456510 hasConcept C124101348 @default.
- W4387456510 hasConcept C153180895 @default.
- W4387456510 hasConcept C154945302 @default.
- W4387456510 hasConcept C169258074 @default.
- W4387456510 hasConcept C22019652 @default.
- W4387456510 hasConcept C41008148 @default.
- W4387456510 hasConcept C50644808 @default.
- W4387456510 hasConcept C84525736 @default.
- W4387456510 hasConcept C95623464 @default.
- W4387456510 hasConceptScore W4387456510C119857082 @default.
- W4387456510 hasConceptScore W4387456510C124101348 @default.
- W4387456510 hasConceptScore W4387456510C153180895 @default.
- W4387456510 hasConceptScore W4387456510C154945302 @default.
- W4387456510 hasConceptScore W4387456510C169258074 @default.
- W4387456510 hasConceptScore W4387456510C22019652 @default.
- W4387456510 hasConceptScore W4387456510C41008148 @default.
- W4387456510 hasConceptScore W4387456510C50644808 @default.
- W4387456510 hasConceptScore W4387456510C84525736 @default.
- W4387456510 hasConceptScore W4387456510C95623464 @default.
- W4387456510 hasLocation W43874565101 @default.
- W4387456510 hasOpenAccess W4387456510 @default.
- W4387456510 hasPrimaryLocation W43874565101 @default.
- W4387456510 hasRelatedWork W2186333919 @default.
- W4387456510 hasRelatedWork W2889302474 @default.
- W4387456510 hasRelatedWork W2989932438 @default.
- W4387456510 hasRelatedWork W4313289487 @default.
- W4387456510 hasRelatedWork W4317732970 @default.
- W4387456510 hasRelatedWork W4321636153 @default.
- W4387456510 hasRelatedWork W4323294312 @default.
- W4387456510 hasRelatedWork W4366990902 @default.
- W4387456510 hasRelatedWork W4384470695 @default.
- W4387456510 hasRelatedWork W4387297750 @default.
- W4387456510 hasVolume "2023" @default.
- W4387456510 isParatext "false" @default.
- W4387456510 isRetracted "false" @default.
- W4387456510 workType "article" @default.