Matches in SemOpenAlex for { <https://semopenalex.org/work/W4387457410> ?p ?o ?g. }
- W4387457410 abstract "Biological transmission (or bioconvection) offers a huge room for studying the interplay between microorganisms and fluid dynamics. The understanding of bioconvection is relevant for studying microbial ecology, population dynamics and exploring the behaviour of microorganisms in complex environments. The objective of this research work is to delve into the physical and biochemical aspects of bioconvection in a magnetized Casson–Maxwell nanofluid containing gyrotactic microorganisms. The investigation is conducted on a tilted elongated cylindrical surface, taking into account the presence of entropy generation. Arrhenius activation energy and slip and convective boundary conditions are novel aspects of this research. The current model invokes the impacts of thermophoresis diffusion, and Brownian motion impacts using the Buongiorno model. The Casson–Maxwell fluid model is employed to expound the rheological behaviour of non-Newtonian nanofluids with the migration of gyrotactic microorganisms. The similarity functions are used to convert the model equations and the related boundary conditions into dimensionless form. The insightful numerical results are developed by implementing the ND Solver in Mathematica, providing valuable insights into the velocity, thermal, concentration, and microorganism fields, as well as the rate of entropy generation and other engineering quantities. Outcomes are presented as graphs and tables for further analysis and discussion. The computational findings unravel several significant contributions of influential model parameters. The Lorentz force and porosity are found to create a drag force that deters the fluid pace, while the reverse trend holds for the fluid temperature. Higher activation energy results in a growth in the concentration field. A larger Peclet number leads to a decline in microorganism density. Furthermore, motile microorganisms’ density and swimming speed significantly influence entropy inflation. A 10% increase in magnetic strength results in a 1.47% increase in skin friction for the Casson fluid model and a 1.32% increase in skin friction for the Casson–Maxwell fluid model. This study contributes to understanding bioconvection in reactive Casson–Maxwell nanofluids with gyrotactic microorganisms and sheds light on entropy production in biological systems." @default.
- W4387457410 created "2023-10-10" @default.
- W4387457410 creator A5028006160 @default.
- W4387457410 creator A5063791835 @default.
- W4387457410 date "2023-10-01" @default.
- W4387457410 modified "2023-10-11" @default.
- W4387457410 title "Biological transmission in a magnetized reactive Casson–Maxwell nanofluid over a tilted stretchy cylinder in an entropy framework" @default.
- W4387457410 cites W1965523406 @default.
- W4387457410 cites W1979467049 @default.
- W4387457410 cites W1988308975 @default.
- W4387457410 cites W2035685097 @default.
- W4387457410 cites W2082777707 @default.
- W4387457410 cites W2098791342 @default.
- W4387457410 cites W2415973547 @default.
- W4387457410 cites W2532201623 @default.
- W4387457410 cites W2577767630 @default.
- W4387457410 cites W2937582767 @default.
- W4387457410 cites W2945541610 @default.
- W4387457410 cites W3009003344 @default.
- W4387457410 cites W3009502263 @default.
- W4387457410 cites W3030980569 @default.
- W4387457410 cites W3031701629 @default.
- W4387457410 cites W3035825824 @default.
- W4387457410 cites W3038014145 @default.
- W4387457410 cites W3042724071 @default.
- W4387457410 cites W3043803742 @default.
- W4387457410 cites W3134075239 @default.
- W4387457410 cites W3170632766 @default.
- W4387457410 cites W3178513636 @default.
- W4387457410 cites W3179791291 @default.
- W4387457410 cites W3180644099 @default.
- W4387457410 cites W3183701694 @default.
- W4387457410 cites W3195331676 @default.
- W4387457410 cites W3197994902 @default.
- W4387457410 cites W3209395869 @default.
- W4387457410 cites W3214865923 @default.
- W4387457410 cites W4206010134 @default.
- W4387457410 cites W4206594313 @default.
- W4387457410 cites W4206747044 @default.
- W4387457410 cites W4220955236 @default.
- W4387457410 cites W4221032917 @default.
- W4387457410 cites W4226484091 @default.
- W4387457410 cites W4281633735 @default.
- W4387457410 cites W4281661232 @default.
- W4387457410 cites W4284972657 @default.
- W4387457410 cites W4288060661 @default.
- W4387457410 cites W4293195138 @default.
- W4387457410 cites W4308923139 @default.
- W4387457410 cites W4309001754 @default.
- W4387457410 cites W4309729785 @default.
- W4387457410 cites W4310052221 @default.
- W4387457410 cites W4311461765 @default.
- W4387457410 cites W4313479260 @default.
- W4387457410 cites W4313561088 @default.
- W4387457410 cites W4316037535 @default.
- W4387457410 cites W4317745940 @default.
- W4387457410 cites W4320521801 @default.
- W4387457410 cites W4320920954 @default.
- W4387457410 cites W4321093285 @default.
- W4387457410 cites W4361222288 @default.
- W4387457410 cites W4366144470 @default.
- W4387457410 cites W4377019967 @default.
- W4387457410 cites W4381436486 @default.
- W4387457410 cites W4382885034 @default.
- W4387457410 doi "https://doi.org/10.1016/j.cjph.2023.10.008" @default.
- W4387457410 hasPublicationYear "2023" @default.
- W4387457410 type Work @default.
- W4387457410 citedByCount "0" @default.
- W4387457410 crossrefType "journal-article" @default.
- W4387457410 hasAuthorship W4387457410A5028006160 @default.
- W4387457410 hasAuthorship W4387457410A5063791835 @default.
- W4387457410 hasConcept C112401455 @default.
- W4387457410 hasConcept C115341296 @default.
- W4387457410 hasConcept C121332964 @default.
- W4387457410 hasConcept C15401063 @default.
- W4387457410 hasConcept C192562407 @default.
- W4387457410 hasConcept C205684552 @default.
- W4387457410 hasConcept C21946209 @default.
- W4387457410 hasConcept C50517652 @default.
- W4387457410 hasConcept C57879066 @default.
- W4387457410 hasConcept C62520636 @default.
- W4387457410 hasConcept C74650414 @default.
- W4387457410 hasConceptScore W4387457410C112401455 @default.
- W4387457410 hasConceptScore W4387457410C115341296 @default.
- W4387457410 hasConceptScore W4387457410C121332964 @default.
- W4387457410 hasConceptScore W4387457410C15401063 @default.
- W4387457410 hasConceptScore W4387457410C192562407 @default.
- W4387457410 hasConceptScore W4387457410C205684552 @default.
- W4387457410 hasConceptScore W4387457410C21946209 @default.
- W4387457410 hasConceptScore W4387457410C50517652 @default.
- W4387457410 hasConceptScore W4387457410C57879066 @default.
- W4387457410 hasConceptScore W4387457410C62520636 @default.
- W4387457410 hasConceptScore W4387457410C74650414 @default.
- W4387457410 hasLocation W43874574101 @default.
- W4387457410 hasOpenAccess W4387457410 @default.
- W4387457410 hasPrimaryLocation W43874574101 @default.
- W4387457410 hasRelatedWork W2018026888 @default.
- W4387457410 hasRelatedWork W2030822698 @default.
- W4387457410 hasRelatedWork W2051828970 @default.
- W4387457410 hasRelatedWork W2095094645 @default.