Matches in SemOpenAlex for { <https://semopenalex.org/work/W4387457536> ?p ?o ?g. }
Showing items 1 to 76 of
76
with 100 items per page.
- W4387457536 endingPage "102063" @default.
- W4387457536 startingPage "102063" @default.
- W4387457536 abstract "Fine-grained traffic forecasting is crucial for the management of urban transportation systems. Road segments and intersection turns, as vital elements of road networks, exhibit heterogeneous spatial structures, yet their traffic states are interconnected due to spatial proximity. The heterogeneity and interrelationships arising from different road network elements pose major challenges to accurate traffic forecasting. However, existing forecasting studies focus solely on bidirectional road segments, disregarding the relationships between roads and turns. To achieve integrated traffic forecasting that considers both road segments and intersection turns, we propose a novel Spatio-Temporal Heterogeneous Graph Transformer (STHGFormer). For road network representation, we innovatively define a Heterogeneous Road network Graph (HRG), which provides a comprehensive depiction of the complete traffic network and emphasizes its inherent heterogeneity. Then, we propose a Heterogeneous Spatial Embedding (HSE) module to encode road network information, including heterogeneous attributes and interactions in the HRG. Based on the spatial information encoded by HSE, a unified SpaFormer, serving as the spatial module of STHGFormer, captures the interdependencies between roads and turns across the entire traffic network. To mitigate the impact of high temporal fluctuation, we embed the Adaptive Soft Threshold (AST) module into TempFormer, which dynamically adjusts the threshold to enhance the analysis capability of complex temporal correlations. Experiments conducted on a real-world dataset from Wuhan, China, demonstrate that STHGFormer outperforms state-of-the-art methods, achieving a 6.1% improvement in road forecasting and an 8.5% improvement in turn forecasting." @default.
- W4387457536 created "2023-10-10" @default.
- W4387457536 creator A5017573950 @default.
- W4387457536 creator A5028099331 @default.
- W4387457536 creator A5051359190 @default.
- W4387457536 creator A5055738438 @default.
- W4387457536 creator A5076702960 @default.
- W4387457536 creator A5078979316 @default.
- W4387457536 date "2023-10-01" @default.
- W4387457536 modified "2023-10-11" @default.
- W4387457536 title "Towards integrated and fine-grained traffic forecasting: A spatio-temporal heterogeneous graph transformer approach" @default.
- W4387457536 cites W1983883318 @default.
- W4387457536 cites W2267720383 @default.
- W4387457536 cites W2587992630 @default.
- W4387457536 cites W2902511681 @default.
- W4387457536 cites W2944851425 @default.
- W4387457536 cites W2945214738 @default.
- W4387457536 cites W2965341826 @default.
- W4387457536 cites W2977117446 @default.
- W4387457536 cites W2999301586 @default.
- W4387457536 cites W3027983943 @default.
- W4387457536 cites W3103720336 @default.
- W4387457536 cites W3108550173 @default.
- W4387457536 cites W3195246606 @default.
- W4387457536 cites W4224293834 @default.
- W4387457536 cites W4310896129 @default.
- W4387457536 cites W4367595602 @default.
- W4387457536 doi "https://doi.org/10.1016/j.inffus.2023.102063" @default.
- W4387457536 hasPublicationYear "2023" @default.
- W4387457536 type Work @default.
- W4387457536 citedByCount "0" @default.
- W4387457536 crossrefType "journal-article" @default.
- W4387457536 hasAuthorship W4387457536A5017573950 @default.
- W4387457536 hasAuthorship W4387457536A5028099331 @default.
- W4387457536 hasAuthorship W4387457536A5051359190 @default.
- W4387457536 hasAuthorship W4387457536A5055738438 @default.
- W4387457536 hasAuthorship W4387457536A5076702960 @default.
- W4387457536 hasAuthorship W4387457536A5078979316 @default.
- W4387457536 hasConcept C124101348 @default.
- W4387457536 hasConcept C127413603 @default.
- W4387457536 hasConcept C132525143 @default.
- W4387457536 hasConcept C17744445 @default.
- W4387457536 hasConcept C185874996 @default.
- W4387457536 hasConcept C199539241 @default.
- W4387457536 hasConcept C22212356 @default.
- W4387457536 hasConcept C41008148 @default.
- W4387457536 hasConcept C64543145 @default.
- W4387457536 hasConcept C80444323 @default.
- W4387457536 hasConceptScore W4387457536C124101348 @default.
- W4387457536 hasConceptScore W4387457536C127413603 @default.
- W4387457536 hasConceptScore W4387457536C132525143 @default.
- W4387457536 hasConceptScore W4387457536C17744445 @default.
- W4387457536 hasConceptScore W4387457536C185874996 @default.
- W4387457536 hasConceptScore W4387457536C199539241 @default.
- W4387457536 hasConceptScore W4387457536C22212356 @default.
- W4387457536 hasConceptScore W4387457536C41008148 @default.
- W4387457536 hasConceptScore W4387457536C64543145 @default.
- W4387457536 hasConceptScore W4387457536C80444323 @default.
- W4387457536 hasLocation W43874575361 @default.
- W4387457536 hasOpenAccess W4387457536 @default.
- W4387457536 hasPrimaryLocation W43874575361 @default.
- W4387457536 hasRelatedWork W114687057 @default.
- W4387457536 hasRelatedWork W1994631104 @default.
- W4387457536 hasRelatedWork W2378306841 @default.
- W4387457536 hasRelatedWork W2390279801 @default.
- W4387457536 hasRelatedWork W2748952813 @default.
- W4387457536 hasRelatedWork W2749324135 @default.
- W4387457536 hasRelatedWork W2899084033 @default.
- W4387457536 hasRelatedWork W2908433117 @default.
- W4387457536 hasRelatedWork W2969604939 @default.
- W4387457536 hasRelatedWork W3122988618 @default.
- W4387457536 isParatext "false" @default.
- W4387457536 isRetracted "false" @default.
- W4387457536 workType "article" @default.