Matches in SemOpenAlex for { <https://semopenalex.org/work/W4387457777> ?p ?o ?g. }
- W4387457777 abstract "High-temperature titanium alloys are the key materials for the components in aerospace and their service life depends largely on creep deformation-induced failure. However, the prediction of creep rupture life remains a challenge due to the lack of available data with well-characterized target property. Here, we proposed two cross-materials transfer learning (TL) strategies to improve the prediction of creep rupture life of high-temperature titanium alloys. Both strategies effectively utilized the knowledge or information encoded in the large dataset (753 samples) of Fe-base, Ni-base, and Co-base superalloys to enhance the surrogate model for small dataset (88 samples) of high-temperature titanium alloys. The first strategy transferred the parameters of the convolutional neural network while the second strategy fused the two datasets. The performances of the TL models were demonstrated on different test datasets with varying sizes outside the training dataset. Our TL models improved the predictions greatly compared to the models obtained by straightly applying five commonly employed algorithms on high-temperature titanium alloys. This work may stimulate the use of TL-based models to accurately predict the service properties of structural materials where the available data is small and sparse." @default.
- W4387457777 created "2023-10-10" @default.
- W4387457777 creator A5000075447 @default.
- W4387457777 creator A5016837509 @default.
- W4387457777 creator A5026441862 @default.
- W4387457777 creator A5047310809 @default.
- W4387457777 creator A5054671208 @default.
- W4387457777 creator A5067742462 @default.
- W4387457777 creator A5084845056 @default.
- W4387457777 date "2023-10-01" @default.
- W4387457777 modified "2023-10-11" @default.
- W4387457777 title "Creep rupture life prediction of high-temperature titanium alloy using cross-material transfer learning" @default.
- W4387457777 cites W1984941387 @default.
- W4387457777 cites W1990211146 @default.
- W4387457777 cites W1991555605 @default.
- W4387457777 cites W2000382684 @default.
- W4387457777 cites W2005798620 @default.
- W4387457777 cites W2011349188 @default.
- W4387457777 cites W2013498203 @default.
- W4387457777 cites W2015291703 @default.
- W4387457777 cites W2029031285 @default.
- W4387457777 cites W2038622864 @default.
- W4387457777 cites W2044674491 @default.
- W4387457777 cites W2053094271 @default.
- W4387457777 cites W2072287313 @default.
- W4387457777 cites W2151554678 @default.
- W4387457777 cites W2199677334 @default.
- W4387457777 cites W2301095044 @default.
- W4387457777 cites W2421098315 @default.
- W4387457777 cites W2564178750 @default.
- W4387457777 cites W2586779072 @default.
- W4387457777 cites W2748573532 @default.
- W4387457777 cites W2766400812 @default.
- W4387457777 cites W2808336794 @default.
- W4387457777 cites W2884430236 @default.
- W4387457777 cites W2899025860 @default.
- W4387457777 cites W2907475412 @default.
- W4387457777 cites W2939893088 @default.
- W4387457777 cites W2963784900 @default.
- W4387457777 cites W2976023839 @default.
- W4387457777 cites W2976102057 @default.
- W4387457777 cites W2990015413 @default.
- W4387457777 cites W2998852707 @default.
- W4387457777 cites W3008994923 @default.
- W4387457777 cites W3024266484 @default.
- W4387457777 cites W3093550675 @default.
- W4387457777 cites W3094755047 @default.
- W4387457777 cites W3097732124 @default.
- W4387457777 cites W3153759616 @default.
- W4387457777 cites W3166124560 @default.
- W4387457777 cites W3189015585 @default.
- W4387457777 cites W3213348597 @default.
- W4387457777 cites W3217485315 @default.
- W4387457777 cites W4283033730 @default.
- W4387457777 cites W4288870978 @default.
- W4387457777 cites W4289830604 @default.
- W4387457777 cites W4309337425 @default.
- W4387457777 cites W4310371256 @default.
- W4387457777 doi "https://doi.org/10.1016/j.jmst.2023.08.046" @default.
- W4387457777 hasPublicationYear "2023" @default.
- W4387457777 type Work @default.
- W4387457777 citedByCount "0" @default.
- W4387457777 crossrefType "journal-article" @default.
- W4387457777 hasAuthorship W4387457777A5000075447 @default.
- W4387457777 hasAuthorship W4387457777A5016837509 @default.
- W4387457777 hasAuthorship W4387457777A5026441862 @default.
- W4387457777 hasAuthorship W4387457777A5047310809 @default.
- W4387457777 hasAuthorship W4387457777A5054671208 @default.
- W4387457777 hasAuthorship W4387457777A5067742462 @default.
- W4387457777 hasAuthorship W4387457777A5084845056 @default.
- W4387457777 hasConcept C103208741 @default.
- W4387457777 hasConcept C119857082 @default.
- W4387457777 hasConcept C136264566 @default.
- W4387457777 hasConcept C149912024 @default.
- W4387457777 hasConcept C150899416 @default.
- W4387457777 hasConcept C154945302 @default.
- W4387457777 hasConcept C159985019 @default.
- W4387457777 hasConcept C162324750 @default.
- W4387457777 hasConcept C167740415 @default.
- W4387457777 hasConcept C17744445 @default.
- W4387457777 hasConcept C191897082 @default.
- W4387457777 hasConcept C192562407 @default.
- W4387457777 hasConcept C199539241 @default.
- W4387457777 hasConcept C204366326 @default.
- W4387457777 hasConcept C207055975 @default.
- W4387457777 hasConcept C2780026712 @default.
- W4387457777 hasConcept C2780378061 @default.
- W4387457777 hasConcept C41008148 @default.
- W4387457777 hasConcept C45804977 @default.
- W4387457777 hasConcept C506065880 @default.
- W4387457777 hasConcept C81363708 @default.
- W4387457777 hasConcept C8953137 @default.
- W4387457777 hasConceptScore W4387457777C103208741 @default.
- W4387457777 hasConceptScore W4387457777C119857082 @default.
- W4387457777 hasConceptScore W4387457777C136264566 @default.
- W4387457777 hasConceptScore W4387457777C149912024 @default.
- W4387457777 hasConceptScore W4387457777C150899416 @default.
- W4387457777 hasConceptScore W4387457777C154945302 @default.
- W4387457777 hasConceptScore W4387457777C159985019 @default.
- W4387457777 hasConceptScore W4387457777C162324750 @default.