Matches in SemOpenAlex for { <https://semopenalex.org/work/W4387458756> ?p ?o ?g. }
Showing items 1 to 83 of
83
with 100 items per page.
- W4387458756 endingPage "102783" @default.
- W4387458756 startingPage "102783" @default.
- W4387458756 abstract "Sudden gains have been found in PTSD treatment across samples and treatment modality. Sudden gains have consistently predicted better treatment response, illustrating clear clinical implications, though attempts to identify predictors of sudden gains have produced inconsistent findings. To date, sudden gains have not been examined in intensive PTSD treatment programs (ITPs). This study explored the occurrence of sudden gains in a 3-week and 2-week ITP (n=465 and n=235), evaluated the effect of sudden gains on post-treatment and follow-up PTSD severity while controlling for overall change, and used three machine learning algorithms to assess our ability to predict sudden gains. We found 31% and 19% of our respective samples experienced a sudden gain during the ITP. In both ITPs, sudden gain status predicted greater PTSD symptom improvement at post-treatment (t2W=-8.57, t3W=-14.86, p<.001) and at 3-month follow-up (t2W=-3.82, t3W=-5.32, p<.001). However, the effect for follow-up was no longer significant after controlling for total symptom reduction across the ITP (t2W=-1.59, t3W=-0.32, p >.05). Our ability to predict sudden gains was poor (AUC <.7) across all three machine learning algorithms. These findings demonstrate that sudden gains can be detected in intensive treatment for PTSD, though their implications for treatment outcomes may be limited. Moreover, despite the use of three machine-learning methods across two fairly large clinical samples, we were still unable to identify variables that accurately predict whether an individual will experience a sudden gain during treatment. Implications for clinical application of these findings and for future studies are discussed." @default.
- W4387458756 created "2023-10-10" @default.
- W4387458756 creator A5005665221 @default.
- W4387458756 creator A5005979972 @default.
- W4387458756 creator A5016543659 @default.
- W4387458756 creator A5027651779 @default.
- W4387458756 creator A5044979129 @default.
- W4387458756 date "2023-10-01" @default.
- W4387458756 modified "2023-10-14" @default.
- W4387458756 title "Using Machine Learning to Predict Sudden Gains in Intensive Treatment for PTSD" @default.
- W4387458756 cites W1831050183 @default.
- W4387458756 cites W1841528870 @default.
- W4387458756 cites W1951724000 @default.
- W4387458756 cites W1967301904 @default.
- W4387458756 cites W1984520689 @default.
- W4387458756 cites W1988690884 @default.
- W4387458756 cites W1990030246 @default.
- W4387458756 cites W1996324786 @default.
- W4387458756 cites W2031504469 @default.
- W4387458756 cites W2084124234 @default.
- W4387458756 cites W2094263544 @default.
- W4387458756 cites W2095367850 @default.
- W4387458756 cites W2110608362 @default.
- W4387458756 cites W2121072935 @default.
- W4387458756 cites W2132322340 @default.
- W4387458756 cites W2412976663 @default.
- W4387458756 cites W2787427645 @default.
- W4387458756 cites W2893799782 @default.
- W4387458756 cites W2896275943 @default.
- W4387458756 cites W2940917903 @default.
- W4387458756 cites W2944337290 @default.
- W4387458756 cites W2991505417 @default.
- W4387458756 cites W2995293300 @default.
- W4387458756 cites W2995380521 @default.
- W4387458756 cites W3004759948 @default.
- W4387458756 cites W3033112657 @default.
- W4387458756 cites W3037700590 @default.
- W4387458756 cites W3039561356 @default.
- W4387458756 cites W3102027041 @default.
- W4387458756 cites W3129788085 @default.
- W4387458756 cites W3173921677 @default.
- W4387458756 cites W3181163959 @default.
- W4387458756 cites W4229001698 @default.
- W4387458756 cites W4235813114 @default.
- W4387458756 cites W4243141749 @default.
- W4387458756 cites W4297406292 @default.
- W4387458756 doi "https://doi.org/10.1016/j.janxdis.2023.102783" @default.
- W4387458756 hasPublicationYear "2023" @default.
- W4387458756 type Work @default.
- W4387458756 citedByCount "0" @default.
- W4387458756 crossrefType "journal-article" @default.
- W4387458756 hasAuthorship W4387458756A5005665221 @default.
- W4387458756 hasAuthorship W4387458756A5005979972 @default.
- W4387458756 hasAuthorship W4387458756A5016543659 @default.
- W4387458756 hasAuthorship W4387458756A5027651779 @default.
- W4387458756 hasAuthorship W4387458756A5044979129 @default.
- W4387458756 hasBestOaLocation W43874587561 @default.
- W4387458756 hasConcept C126322002 @default.
- W4387458756 hasConcept C15744967 @default.
- W4387458756 hasConcept C2993353509 @default.
- W4387458756 hasConcept C71924100 @default.
- W4387458756 hasConceptScore W4387458756C126322002 @default.
- W4387458756 hasConceptScore W4387458756C15744967 @default.
- W4387458756 hasConceptScore W4387458756C2993353509 @default.
- W4387458756 hasConceptScore W4387458756C71924100 @default.
- W4387458756 hasLocation W43874587561 @default.
- W4387458756 hasOpenAccess W4387458756 @default.
- W4387458756 hasPrimaryLocation W43874587561 @default.
- W4387458756 hasRelatedWork W1531601525 @default.
- W4387458756 hasRelatedWork W2748952813 @default.
- W4387458756 hasRelatedWork W2758277628 @default.
- W4387458756 hasRelatedWork W2899084033 @default.
- W4387458756 hasRelatedWork W2935909890 @default.
- W4387458756 hasRelatedWork W2948807893 @default.
- W4387458756 hasRelatedWork W3173606202 @default.
- W4387458756 hasRelatedWork W3183948672 @default.
- W4387458756 hasRelatedWork W2778153218 @default.
- W4387458756 hasRelatedWork W3110381201 @default.
- W4387458756 isParatext "false" @default.
- W4387458756 isRetracted "false" @default.
- W4387458756 workType "article" @default.