Matches in SemOpenAlex for { <https://semopenalex.org/work/W4387461142> ?p ?o ?g. }
Showing items 1 to 92 of
92
with 100 items per page.
- W4387461142 endingPage "104511" @default.
- W4387461142 startingPage "104511" @default.
- W4387461142 abstract "Analyzing large EHR databases to predict cancer progression and treatments has become a hot trend in recent years. An increasing number of modern deep learning models have been proposed to find the milestones of essential patient medical journey characteristics to predict their disease status and give healthcare professionals valuable insights. However, most of the existing methods are lack of consideration for the inter-relationship among different patients. We believe that more valuable information can be extracted, especially when patients with similar disease statuses visit the same doctors. Towards this end, a similar patient augmentation-based approach named SimPA is proposed to enhance the learning of patient representations and further predict lines of therapy transition. Our experiment results on a real-world multiple myeloma dataset show that our proposed approach outperforms state-of-the-art baseline approaches in terms of standard evaluation metrics for classification tasks." @default.
- W4387461142 created "2023-10-10" @default.
- W4387461142 creator A5001030192 @default.
- W4387461142 creator A5044416074 @default.
- W4387461142 creator A5054702462 @default.
- W4387461142 creator A5067067544 @default.
- W4387461142 creator A5069438458 @default.
- W4387461142 creator A5087476818 @default.
- W4387461142 date "2023-11-01" @default.
- W4387461142 modified "2023-10-15" @default.
- W4387461142 title "Predicting line of therapy transition via similar patient augmentation" @default.
- W4387461142 cites W1965701254 @default.
- W4387461142 cites W2064675550 @default.
- W4387461142 cites W2290818676 @default.
- W4387461142 cites W2742491462 @default.
- W4387461142 cites W2804604520 @default.
- W4387461142 cites W2809396336 @default.
- W4387461142 cites W2809398771 @default.
- W4387461142 cites W2885305010 @default.
- W4387461142 cites W2925264218 @default.
- W4387461142 cites W2963532813 @default.
- W4387461142 cites W2994958138 @default.
- W4387461142 cites W2998409174 @default.
- W4387461142 cites W3080098168 @default.
- W4387461142 cites W3092301826 @default.
- W4387461142 cites W3093599560 @default.
- W4387461142 cites W3099136959 @default.
- W4387461142 cites W3134103265 @default.
- W4387461142 cites W3156039010 @default.
- W4387461142 cites W3163616589 @default.
- W4387461142 cites W3169863762 @default.
- W4387461142 cites W3181803118 @default.
- W4387461142 cites W3194273732 @default.
- W4387461142 cites W3209819631 @default.
- W4387461142 cites W3216036741 @default.
- W4387461142 cites W631393214 @default.
- W4387461142 doi "https://doi.org/10.1016/j.jbi.2023.104511" @default.
- W4387461142 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/37813326" @default.
- W4387461142 hasPublicationYear "2023" @default.
- W4387461142 type Work @default.
- W4387461142 citedByCount "0" @default.
- W4387461142 crossrefType "journal-article" @default.
- W4387461142 hasAuthorship W4387461142A5001030192 @default.
- W4387461142 hasAuthorship W4387461142A5044416074 @default.
- W4387461142 hasAuthorship W4387461142A5054702462 @default.
- W4387461142 hasAuthorship W4387461142A5067067544 @default.
- W4387461142 hasAuthorship W4387461142A5069438458 @default.
- W4387461142 hasAuthorship W4387461142A5087476818 @default.
- W4387461142 hasConcept C111368507 @default.
- W4387461142 hasConcept C119857082 @default.
- W4387461142 hasConcept C12725497 @default.
- W4387461142 hasConcept C127313418 @default.
- W4387461142 hasConcept C142724271 @default.
- W4387461142 hasConcept C154945302 @default.
- W4387461142 hasConcept C198352243 @default.
- W4387461142 hasConcept C2524010 @default.
- W4387461142 hasConcept C2779134260 @default.
- W4387461142 hasConcept C33923547 @default.
- W4387461142 hasConcept C41008148 @default.
- W4387461142 hasConcept C71924100 @default.
- W4387461142 hasConceptScore W4387461142C111368507 @default.
- W4387461142 hasConceptScore W4387461142C119857082 @default.
- W4387461142 hasConceptScore W4387461142C12725497 @default.
- W4387461142 hasConceptScore W4387461142C127313418 @default.
- W4387461142 hasConceptScore W4387461142C142724271 @default.
- W4387461142 hasConceptScore W4387461142C154945302 @default.
- W4387461142 hasConceptScore W4387461142C198352243 @default.
- W4387461142 hasConceptScore W4387461142C2524010 @default.
- W4387461142 hasConceptScore W4387461142C2779134260 @default.
- W4387461142 hasConceptScore W4387461142C33923547 @default.
- W4387461142 hasConceptScore W4387461142C41008148 @default.
- W4387461142 hasConceptScore W4387461142C71924100 @default.
- W4387461142 hasLocation W43874611421 @default.
- W4387461142 hasLocation W43874611422 @default.
- W4387461142 hasOpenAccess W4387461142 @default.
- W4387461142 hasPrimaryLocation W43874611421 @default.
- W4387461142 hasRelatedWork W2961085424 @default.
- W4387461142 hasRelatedWork W3046775127 @default.
- W4387461142 hasRelatedWork W3107602296 @default.
- W4387461142 hasRelatedWork W3170094116 @default.
- W4387461142 hasRelatedWork W3209574120 @default.
- W4387461142 hasRelatedWork W4210805261 @default.
- W4387461142 hasRelatedWork W4306674287 @default.
- W4387461142 hasRelatedWork W4312192474 @default.
- W4387461142 hasRelatedWork W4386462264 @default.
- W4387461142 hasRelatedWork W4387297750 @default.
- W4387461142 hasVolume "147" @default.
- W4387461142 isParatext "false" @default.
- W4387461142 isRetracted "false" @default.
- W4387461142 workType "article" @default.