Matches in SemOpenAlex for { <https://semopenalex.org/work/W4387461214> ?p ?o ?g. }
Showing items 1 to 100 of
100
with 100 items per page.
- W4387461214 endingPage "884" @default.
- W4387461214 startingPage "869" @default.
- W4387461214 abstract "Recent advances in mathematical modeling and artificial intelligence have challenged the use of traditional regression analysis in biomedical research. This study examined artificial data sets and biomedical data sets from cancer research using binomial and multinomial logistic regression. The results were compared with those obtained with machine learning models such as random forest, support vector machine, Bayesian classifiers, k-nearest neighbors, and repeated incremental clipping (RIPPER). The alternative models often outperformed regression in accurately classifying new cases. Logistic regression had a structural problem similar to early single-layer neural networks, which limited its ability to identify variables with high statistical significance for reliable class assignments. Therefore, regression is not per se the best model for class prediction in biomedical data sets. The study emphasizes the importance of validating selected models and suggests that a “mixture of experts” approach may be a more advanced and effective strategy for analyzing biomedical data sets." @default.
- W4387461214 created "2023-10-10" @default.
- W4387461214 creator A5078097779 @default.
- W4387461214 creator A5090927399 @default.
- W4387461214 date "2023-10-08" @default.
- W4387461214 modified "2023-10-11" @default.
- W4387461214 title "Pitfalls of Using Multinomial Regression Analysis to Identify Class-Structure-Relevant Variables in Biomedical Data Sets: Why a Mixture of Experts (MOE) Approach Is Better" @default.
- W4387461214 cites W1513618424 @default.
- W4387461214 cites W1682599886 @default.
- W4387461214 cites W1831050183 @default.
- W4387461214 cites W2001619934 @default.
- W4387461214 cites W2006252838 @default.
- W4387461214 cites W2040870580 @default.
- W4387461214 cites W2095683621 @default.
- W4387461214 cites W2101807845 @default.
- W4387461214 cites W2122111042 @default.
- W4387461214 cites W2124785086 @default.
- W4387461214 cites W2151480498 @default.
- W4387461214 cites W2161739581 @default.
- W4387461214 cites W2170951896 @default.
- W4387461214 cites W2294798173 @default.
- W4387461214 cites W2406250479 @default.
- W4387461214 cites W2498119267 @default.
- W4387461214 cites W2895762064 @default.
- W4387461214 cites W2911964244 @default.
- W4387461214 cites W2944658903 @default.
- W4387461214 cites W2990225608 @default.
- W4387461214 cites W3004130044 @default.
- W4387461214 cites W3110895566 @default.
- W4387461214 cites W3150635270 @default.
- W4387461214 cites W4225295960 @default.
- W4387461214 cites W4229930971 @default.
- W4387461214 cites W4230096730 @default.
- W4387461214 cites W4230900352 @default.
- W4387461214 cites W4239510810 @default.
- W4387461214 cites W4306737650 @default.
- W4387461214 cites W4328129481 @default.
- W4387461214 cites W4362471317 @default.
- W4387461214 cites W602677538 @default.
- W4387461214 doi "https://doi.org/10.3390/biomedinformatics3040054" @default.
- W4387461214 hasPublicationYear "2023" @default.
- W4387461214 type Work @default.
- W4387461214 citedByCount "0" @default.
- W4387461214 crossrefType "journal-article" @default.
- W4387461214 hasAuthorship W4387461214A5078097779 @default.
- W4387461214 hasAuthorship W4387461214A5090927399 @default.
- W4387461214 hasBestOaLocation W43874612141 @default.
- W4387461214 hasConcept C105795698 @default.
- W4387461214 hasConcept C107673813 @default.
- W4387461214 hasConcept C114494560 @default.
- W4387461214 hasConcept C117568660 @default.
- W4387461214 hasConcept C119857082 @default.
- W4387461214 hasConcept C12267149 @default.
- W4387461214 hasConcept C124101348 @default.
- W4387461214 hasConcept C151956035 @default.
- W4387461214 hasConcept C152877465 @default.
- W4387461214 hasConcept C154945302 @default.
- W4387461214 hasConcept C169258074 @default.
- W4387461214 hasConcept C192065140 @default.
- W4387461214 hasConcept C2777212361 @default.
- W4387461214 hasConcept C33923547 @default.
- W4387461214 hasConcept C41008148 @default.
- W4387461214 hasConcept C83546350 @default.
- W4387461214 hasConceptScore W4387461214C105795698 @default.
- W4387461214 hasConceptScore W4387461214C107673813 @default.
- W4387461214 hasConceptScore W4387461214C114494560 @default.
- W4387461214 hasConceptScore W4387461214C117568660 @default.
- W4387461214 hasConceptScore W4387461214C119857082 @default.
- W4387461214 hasConceptScore W4387461214C12267149 @default.
- W4387461214 hasConceptScore W4387461214C124101348 @default.
- W4387461214 hasConceptScore W4387461214C151956035 @default.
- W4387461214 hasConceptScore W4387461214C152877465 @default.
- W4387461214 hasConceptScore W4387461214C154945302 @default.
- W4387461214 hasConceptScore W4387461214C169258074 @default.
- W4387461214 hasConceptScore W4387461214C192065140 @default.
- W4387461214 hasConceptScore W4387461214C2777212361 @default.
- W4387461214 hasConceptScore W4387461214C33923547 @default.
- W4387461214 hasConceptScore W4387461214C41008148 @default.
- W4387461214 hasConceptScore W4387461214C83546350 @default.
- W4387461214 hasFunder F4320320879 @default.
- W4387461214 hasIssue "4" @default.
- W4387461214 hasLocation W43874612141 @default.
- W4387461214 hasOpenAccess W4387461214 @default.
- W4387461214 hasPrimaryLocation W43874612141 @default.
- W4387461214 hasRelatedWork W2367214771 @default.
- W4387461214 hasRelatedWork W2784774275 @default.
- W4387461214 hasRelatedWork W2940614149 @default.
- W4387461214 hasRelatedWork W4288365262 @default.
- W4387461214 hasRelatedWork W4289884158 @default.
- W4387461214 hasRelatedWork W4319783304 @default.
- W4387461214 hasRelatedWork W4383647807 @default.
- W4387461214 hasRelatedWork W766138655 @default.
- W4387461214 hasRelatedWork W1917858188 @default.
- W4387461214 hasRelatedWork W2184978910 @default.
- W4387461214 hasVolume "3" @default.
- W4387461214 isParatext "false" @default.
- W4387461214 isRetracted "false" @default.
- W4387461214 workType "article" @default.