Matches in SemOpenAlex for { <https://semopenalex.org/work/W4387461618> ?p ?o ?g. }
Showing items 1 to 84 of
84
with 100 items per page.
- W4387461618 endingPage "808" @default.
- W4387461618 startingPage "781" @default.
- W4387461618 abstract "Functional data analysis has significantly enriched the landscape of existing data analysis methodologies, providing a new framework for comprehending data structures and extracting valuable insights. This paper is dedicated to addressing functional data clustering—a pivotal challenge within functional data analysis. Our contribution to this field manifests through the introduction of innovative clustering methodologies tailored specifically to functional curves. Initially, we present a proximity measure algorithm designed for functional curve clustering. This innovative clustering approach offers the flexibility to redefine measurement points on continuous functions, adapting to either equidistant or nonuniform arrangements, as dictated by the demands of the proximity measure. Central to this method is the “proximity threshold”, a critical parameter that governs the cluster count, and its selection is thoroughly explored. Subsequently, we propose a time-shift clustering algorithm designed for time-series data. This approach identifies historical data segments that share patterns similar to those observed in the present. To evaluate the effectiveness of our methodologies, we conduct comparisons with the classic K-means clustering method and apply them to simulated data, yielding encouraging simulation results. Moving beyond simulation, we apply the proposed proximity measure algorithm to COVID-19 data, yielding notable clustering accuracy. Additionally, the time-shift clustering algorithm is employed to analyse NASDAQ Composite data, successfully revealing underlying economic cycles." @default.
- W4387461618 created "2023-10-10" @default.
- W4387461618 creator A5003479956 @default.
- W4387461618 creator A5031075228 @default.
- W4387461618 date "2023-10-08" @default.
- W4387461618 modified "2023-10-11" @default.
- W4387461618 title "A Novel Curve Clustering Method for Functional Data: Applications to COVID-19 and Financial Data" @default.
- W4387461618 cites W1763496468 @default.
- W4387461618 cites W1978070851 @default.
- W4387461618 cites W1983908352 @default.
- W4387461618 cites W1988997815 @default.
- W4387461618 cites W1990369652 @default.
- W4387461618 cites W1996619541 @default.
- W4387461618 cites W2006907251 @default.
- W4387461618 cites W2021137021 @default.
- W4387461618 cites W2050850754 @default.
- W4387461618 cites W2069297020 @default.
- W4387461618 cites W2076434863 @default.
- W4387461618 cites W2150097763 @default.
- W4387461618 cites W2154090037 @default.
- W4387461618 cites W2396526128 @default.
- W4387461618 cites W3022122691 @default.
- W4387461618 cites W3028661525 @default.
- W4387461618 cites W3120001221 @default.
- W4387461618 cites W3169372665 @default.
- W4387461618 cites W3186476465 @default.
- W4387461618 cites W407855399 @default.
- W4387461618 cites W4298876635 @default.
- W4387461618 doi "https://doi.org/10.3390/analytics2040041" @default.
- W4387461618 hasPublicationYear "2023" @default.
- W4387461618 type Work @default.
- W4387461618 citedByCount "0" @default.
- W4387461618 crossrefType "journal-article" @default.
- W4387461618 hasAuthorship W4387461618A5003479956 @default.
- W4387461618 hasAuthorship W4387461618A5031075228 @default.
- W4387461618 hasBestOaLocation W43874616181 @default.
- W4387461618 hasConcept C105795698 @default.
- W4387461618 hasConcept C11413529 @default.
- W4387461618 hasConcept C119857082 @default.
- W4387461618 hasConcept C124101348 @default.
- W4387461618 hasConcept C184509293 @default.
- W4387461618 hasConcept C202444582 @default.
- W4387461618 hasConcept C21080849 @default.
- W4387461618 hasConcept C2780009758 @default.
- W4387461618 hasConcept C2780598303 @default.
- W4387461618 hasConcept C33923547 @default.
- W4387461618 hasConcept C41008148 @default.
- W4387461618 hasConcept C51820054 @default.
- W4387461618 hasConcept C73555534 @default.
- W4387461618 hasConcept C9652623 @default.
- W4387461618 hasConceptScore W4387461618C105795698 @default.
- W4387461618 hasConceptScore W4387461618C11413529 @default.
- W4387461618 hasConceptScore W4387461618C119857082 @default.
- W4387461618 hasConceptScore W4387461618C124101348 @default.
- W4387461618 hasConceptScore W4387461618C184509293 @default.
- W4387461618 hasConceptScore W4387461618C202444582 @default.
- W4387461618 hasConceptScore W4387461618C21080849 @default.
- W4387461618 hasConceptScore W4387461618C2780009758 @default.
- W4387461618 hasConceptScore W4387461618C2780598303 @default.
- W4387461618 hasConceptScore W4387461618C33923547 @default.
- W4387461618 hasConceptScore W4387461618C41008148 @default.
- W4387461618 hasConceptScore W4387461618C51820054 @default.
- W4387461618 hasConceptScore W4387461618C73555534 @default.
- W4387461618 hasConceptScore W4387461618C9652623 @default.
- W4387461618 hasIssue "4" @default.
- W4387461618 hasLocation W43874616181 @default.
- W4387461618 hasOpenAccess W4387461618 @default.
- W4387461618 hasPrimaryLocation W43874616181 @default.
- W4387461618 hasRelatedWork W2110877857 @default.
- W4387461618 hasRelatedWork W2111119584 @default.
- W4387461618 hasRelatedWork W2589483699 @default.
- W4387461618 hasRelatedWork W2590034888 @default.
- W4387461618 hasRelatedWork W3080491161 @default.
- W4387461618 hasRelatedWork W3098102082 @default.
- W4387461618 hasRelatedWork W3124860551 @default.
- W4387461618 hasRelatedWork W3186815950 @default.
- W4387461618 hasRelatedWork W4292621762 @default.
- W4387461618 hasRelatedWork W4385270139 @default.
- W4387461618 hasVolume "2" @default.
- W4387461618 isParatext "false" @default.
- W4387461618 isRetracted "false" @default.
- W4387461618 workType "article" @default.