Matches in SemOpenAlex for { <https://semopenalex.org/work/W4387461906> ?p ?o ?g. }
Showing items 1 to 68 of
68
with 100 items per page.
- W4387461906 endingPage "246" @default.
- W4387461906 startingPage "230" @default.
- W4387461906 abstract "Machine learning algorithms can assist pregnant women and physicians in predicting risk factors associated with pregnancy. In order to reduce maternal mortality, early and accurate detection of pregnancy related complications is essential. In this chapter, a systematic evaluation of prior work based on pregnancy risk prediction using deep learning and ML is carried out. Based on this the work proposes models prepared using three machine machine learning algorithms: SVM, DT and extra tree classifier, and two deep learning algorithms: LSTM and Bi-LSTM. All the models were trained to identify the pregnancy related risk in three categories: low, medium and high. The proposed method is implemented in three different steps. First step includes of data selection and pre-processing, in second step implementation of ML and DL algorithms and in third step models were evaluated to test the performance using standard metrics. The results indicate Bi-LSTM model outperformed by achieving 94.34% of accuracy compared to other models." @default.
- W4387461906 created "2023-10-10" @default.
- W4387461906 creator A5028623083 @default.
- W4387461906 date "2023-09-29" @default.
- W4387461906 modified "2023-10-11" @default.
- W4387461906 title "Prediction of Pregnancy Complications Using Machine Learning and Deep Learning Algorithms" @default.
- W4387461906 cites W1966168183 @default.
- W4387461906 cites W1994884548 @default.
- W4387461906 cites W2020492074 @default.
- W4387461906 cites W2093619766 @default.
- W4387461906 cites W2321990803 @default.
- W4387461906 cites W2463638724 @default.
- W4387461906 cites W2587299461 @default.
- W4387461906 cites W2751274270 @default.
- W4387461906 cites W2755099516 @default.
- W4387461906 cites W2885251459 @default.
- W4387461906 cites W2905353256 @default.
- W4387461906 cites W2914541952 @default.
- W4387461906 cites W2992584342 @default.
- W4387461906 cites W3013974198 @default.
- W4387461906 cites W3134847673 @default.
- W4387461906 cites W3135028703 @default.
- W4387461906 cites W3193920525 @default.
- W4387461906 cites W4210559040 @default.
- W4387461906 cites W4231529084 @default.
- W4387461906 cites W4236137412 @default.
- W4387461906 cites W4248524623 @default.
- W4387461906 cites W4303946458 @default.
- W4387461906 cites W4309215509 @default.
- W4387461906 cites W4321498125 @default.
- W4387461906 doi "https://doi.org/10.4018/979-8-3693-1718-1.ch014" @default.
- W4387461906 hasPublicationYear "2023" @default.
- W4387461906 type Work @default.
- W4387461906 citedByCount "0" @default.
- W4387461906 crossrefType "book-chapter" @default.
- W4387461906 hasAuthorship W4387461906A5028623083 @default.
- W4387461906 hasConcept C108583219 @default.
- W4387461906 hasConcept C11413529 @default.
- W4387461906 hasConcept C119857082 @default.
- W4387461906 hasConcept C12267149 @default.
- W4387461906 hasConcept C154945302 @default.
- W4387461906 hasConcept C169258074 @default.
- W4387461906 hasConcept C41008148 @default.
- W4387461906 hasConceptScore W4387461906C108583219 @default.
- W4387461906 hasConceptScore W4387461906C11413529 @default.
- W4387461906 hasConceptScore W4387461906C119857082 @default.
- W4387461906 hasConceptScore W4387461906C12267149 @default.
- W4387461906 hasConceptScore W4387461906C154945302 @default.
- W4387461906 hasConceptScore W4387461906C169258074 @default.
- W4387461906 hasConceptScore W4387461906C41008148 @default.
- W4387461906 hasLocation W43874619061 @default.
- W4387461906 hasOpenAccess W4387461906 @default.
- W4387461906 hasPrimaryLocation W43874619061 @default.
- W4387461906 hasRelatedWork W1546989560 @default.
- W4387461906 hasRelatedWork W2004826645 @default.
- W4387461906 hasRelatedWork W2051487156 @default.
- W4387461906 hasRelatedWork W2955796858 @default.
- W4387461906 hasRelatedWork W3135818052 @default.
- W4387461906 hasRelatedWork W3171520305 @default.
- W4387461906 hasRelatedWork W4200112873 @default.
- W4387461906 hasRelatedWork W4224941037 @default.
- W4387461906 hasRelatedWork W4380075502 @default.
- W4387461906 hasRelatedWork W4386259002 @default.
- W4387461906 isParatext "false" @default.
- W4387461906 isRetracted "false" @default.
- W4387461906 workType "book-chapter" @default.