Matches in SemOpenAlex for { <https://semopenalex.org/work/W4387473341> ?p ?o ?g. }
Showing items 1 to 86 of
86
with 100 items per page.
- W4387473341 abstract "Metabolism, disrupted metabolic function, and the pathophysiology of aberrant body weight states are classics of physiological research and non-negotiables in most medical school curricula. Let us quickly revisit current topics in this wide area, stay up to date, and have a look at recently published articles in Acta Physiologica. Dietary strategies are usually the first and most recommended lifestyle adaptations in the management of metabolic syndrome, high triglycerides, and low HDL cholesterol, including a recommended primary intake of complex carbs, proteins, and monounsaturated fats, mainly from plant-based sources.1 Metabolic syndrome spectrum pathophysiology is characterized by a reduced metabolic reserve and flexibility, that is, an impaired ability to adequately respond to changing metabolic demands, as is the case in insulin resistance and impaired fuel selection between glucose and fatty acids in obesity and type 2 diabetes, respectively.2 Kutz et al.3 recently elucidated the role of Na/K-ATPase (NKA)-mediated regulation of Src kinase in the regulation of metabolic capacity, which can, interestingly, be targeted pharmacologically. Dos Santos et al.4 investigate the influence of macronutrient on the insulin-to-glucagon ratio in healthy and diabetic individuals, which is a more sufficient parameter than either insulin or glucagon levels alone.5 Their results are in favor of the low-carb approach to weight loss in overweight individuals. Another interesting observation comes from a study done by Popov et al., who showed how a high-fat diet, which is in other context considered harmful, actually enhances the size and function of astrocytes and promotes synaptic plasticity,6 thus leaving the scientific community with a lot of food for thought, as to, for example, in which contexts dietary-induced changes in astrocytic morphology and function would be beneficial or detrimental.7 Desmet et al., in a recent study, describe how chronic jetlag, as occurs frequent time zone traveling, actually disrupts rhythmicity in gut function, with potential negative metabolic consequences, for example, an alteration of the food intake pattern and involuntary body weight gain.8 Shibayama et al. recently investigated how hepatic glucocorticoid receptors are stabilized during starvation periods, an important step in elucidating the transcriptional control of nuclear receptors in physiological fasting-feeding cycles.9 Exercise regimens are another staple in the international guidelines for the long-term management of metabolic syndrome.10 In a recent study by Sabaratnam et al., the role of the skeletal muscle as an endocrine organ is recognized, in, for example, exercise-mediated interorgan communication through myokine release.11 Given the differences in skeletal muscle function between subjects of different ages or gender,12 the study of metabolic effects of muscle tissue needs to differentiate accordingly. Christiansen et al. have seen first indications of an added benefit of controlled blood flow restriction in exercise-mediated induction of factors regulating cholesterol production and glucose homeostasis.13 Marafon et al. investigated the influence of different exercise regimen patterns on endoplasmic reticulum stress markers in skeletal muscle, showing that, while chronic exercise attenuates ER stress, acute exercise requires adequate recovery periods to avoid pathophysiologic induction of ER stress, with subsequent metabolic consequences.14 Loss of muscle mass, which can be due to several different pathophysiologic mechanisms, has relatively recently been shown to be a novel risk factor for cardiovascular disease. Even without a reduction in body mass, exercise, via an increase in skeletal muscle tissue volume, may protect against obesity-related secondary cardiovascular dysfunction such as hypertension and secondary renal injury.15 We are only recently beginning to unravel the complex interaction of hypertension, loss of muscle volume, and CV risk in different systemic diseases.16, 17 Myokine networks regulate the complex mechanisms required to regenerate skeletal muscle in attempts to counteract the effects of a loss of volume in skeletal muscle tissue.18 Doncheva et al. have found first evidence of extracellular vesicles, also mediators in interorgan cross talk, change in association with exercise, and impact metabolic health such as obesity and insulin sensitivity.19 Studies of metabolic aberrations in humans would not be complete without considering metabolic interactions between parental and filial generations. Recently, Cornejo et al. described how pre-pregnancy obesity, a condition which is on the rise worldwide, affects the vascular aberrations and resulting risk for both the mother and the foetus in gestational diabetes.20 Lean et al. have taken a closer look at the negative effects of obesity on maternal lactation ability,21 another obesity-associated complication in childbearing women that warrants early vigilance and targeted intervention. Taken together, while most of these findings suggest an increase in a multitude of obesity-associated health problems, the mechanisms outlined in these studies help develop targeted strategies for prevention and therapeutic intervention. None. None. None. None." @default.
- W4387473341 created "2023-10-11" @default.
- W4387473341 creator A5055520102 @default.
- W4387473341 creator A5059310123 @default.
- W4387473341 date "2023-10-10" @default.
- W4387473341 modified "2023-10-16" @default.
- W4387473341 title "Metabolism revisited" @default.
- W4387473341 cites W2103714496 @default.
- W4387473341 cites W2611848952 @default.
- W4387473341 cites W2892127723 @default.
- W4387473341 cites W3091080084 @default.
- W4387473341 cites W3130366309 @default.
- W4387473341 cites W3133266944 @default.
- W4387473341 cites W3138248751 @default.
- W4387473341 cites W3158945442 @default.
- W4387473341 cites W3168745737 @default.
- W4387473341 cites W4206016974 @default.
- W4387473341 cites W4206412865 @default.
- W4387473341 cites W4206631396 @default.
- W4387473341 cites W4210433889 @default.
- W4387473341 cites W4213125303 @default.
- W4387473341 cites W4220739212 @default.
- W4387473341 cites W4281836507 @default.
- W4387473341 cites W4285993037 @default.
- W4387473341 cites W4287921405 @default.
- W4387473341 cites W4288514362 @default.
- W4387473341 cites W4294368317 @default.
- W4387473341 cites W4304014636 @default.
- W4387473341 doi "https://doi.org/10.1111/apha.14055" @default.
- W4387473341 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/37814993" @default.
- W4387473341 hasPublicationYear "2023" @default.
- W4387473341 type Work @default.
- W4387473341 citedByCount "0" @default.
- W4387473341 crossrefType "journal-article" @default.
- W4387473341 hasAuthorship W4387473341A5055520102 @default.
- W4387473341 hasAuthorship W4387473341A5059310123 @default.
- W4387473341 hasBestOaLocation W43874733411 @default.
- W4387473341 hasConcept C10162356 @default.
- W4387473341 hasConcept C126322002 @default.
- W4387473341 hasConcept C134018914 @default.
- W4387473341 hasConcept C151730666 @default.
- W4387473341 hasConcept C2777180221 @default.
- W4387473341 hasConcept C2777391703 @default.
- W4387473341 hasConcept C2779306644 @default.
- W4387473341 hasConcept C2779343474 @default.
- W4387473341 hasConcept C2780578515 @default.
- W4387473341 hasConcept C2780586474 @default.
- W4387473341 hasConcept C511355011 @default.
- W4387473341 hasConcept C544821477 @default.
- W4387473341 hasConcept C555293320 @default.
- W4387473341 hasConcept C62231903 @default.
- W4387473341 hasConcept C71924100 @default.
- W4387473341 hasConcept C86803240 @default.
- W4387473341 hasConceptScore W4387473341C10162356 @default.
- W4387473341 hasConceptScore W4387473341C126322002 @default.
- W4387473341 hasConceptScore W4387473341C134018914 @default.
- W4387473341 hasConceptScore W4387473341C151730666 @default.
- W4387473341 hasConceptScore W4387473341C2777180221 @default.
- W4387473341 hasConceptScore W4387473341C2777391703 @default.
- W4387473341 hasConceptScore W4387473341C2779306644 @default.
- W4387473341 hasConceptScore W4387473341C2779343474 @default.
- W4387473341 hasConceptScore W4387473341C2780578515 @default.
- W4387473341 hasConceptScore W4387473341C2780586474 @default.
- W4387473341 hasConceptScore W4387473341C511355011 @default.
- W4387473341 hasConceptScore W4387473341C544821477 @default.
- W4387473341 hasConceptScore W4387473341C555293320 @default.
- W4387473341 hasConceptScore W4387473341C62231903 @default.
- W4387473341 hasConceptScore W4387473341C71924100 @default.
- W4387473341 hasConceptScore W4387473341C86803240 @default.
- W4387473341 hasLocation W43874733411 @default.
- W4387473341 hasLocation W43874733412 @default.
- W4387473341 hasOpenAccess W4387473341 @default.
- W4387473341 hasPrimaryLocation W43874733411 @default.
- W4387473341 hasRelatedWork W1842607881 @default.
- W4387473341 hasRelatedWork W1999791383 @default.
- W4387473341 hasRelatedWork W2005900879 @default.
- W4387473341 hasRelatedWork W2028667143 @default.
- W4387473341 hasRelatedWork W2102483815 @default.
- W4387473341 hasRelatedWork W2313454058 @default.
- W4387473341 hasRelatedWork W236355199 @default.
- W4387473341 hasRelatedWork W2475280487 @default.
- W4387473341 hasRelatedWork W2593732884 @default.
- W4387473341 hasRelatedWork W3122878625 @default.
- W4387473341 isParatext "false" @default.
- W4387473341 isRetracted "false" @default.
- W4387473341 workType "article" @default.