Matches in SemOpenAlex for { <https://semopenalex.org/work/W4387473764> ?p ?o ?g. }
- W4387473764 endingPage "4237" @default.
- W4387473764 startingPage "4237" @default.
- W4387473764 abstract "This study employs a supervised learning method to predict the tunnel boring machine (TBM) penetration rate (PR) with high accuracy. To this end, the extreme gradient boosting (XGBoost) model is optimized based on two swarm intelligence algorithms, i.e., the sparrow search algorithm (SSA) and the whale optimization algorithm (WOA). Three other machine learning models, including random forest (RF), support vector machine (SVM), and artificial neural network (ANN) models, are also developed as the drawback. A database created in Shenzhen (China), comprising 503 entries and featuring 10 input variables and 1 output variable, was utilized to train and test the prediction models. The model development results indicate that the use of SSA and WOA has the potential to improve the XGBoost model performance in predicting the TBM performance. The performance evaluation results show that the proposed WOA-XGBoost model has achieved the most satisfactory performance by resulting in the most reliable prediction accuracy of the four performance indices. This research serves as a compelling illustration of how combined approaches, such as supervised learning methods and swarm intelligence algorithms, can enhance TBM prediction performance and can provide a reference when solving other related engineering problems." @default.
- W4387473764 created "2023-10-11" @default.
- W4387473764 creator A5024434626 @default.
- W4387473764 creator A5035626393 @default.
- W4387473764 creator A5041654385 @default.
- W4387473764 date "2023-10-10" @default.
- W4387473764 modified "2023-10-18" @default.
- W4387473764 title "Tunnel Boring Machine Performance Prediction Using Supervised Learning Method and Swarm Intelligence Algorithm" @default.
- W4387473764 cites W1678356000 @default.
- W4387473764 cites W1985479415 @default.
- W4387473764 cites W2031794358 @default.
- W4387473764 cites W2047350787 @default.
- W4387473764 cites W2054224043 @default.
- W4387473764 cites W2067016494 @default.
- W4387473764 cites W2089775076 @default.
- W4387473764 cites W2110529327 @default.
- W4387473764 cites W2166186246 @default.
- W4387473764 cites W2212385811 @default.
- W4387473764 cites W2290883490 @default.
- W4387473764 cites W2323606357 @default.
- W4387473764 cites W2512458385 @default.
- W4387473764 cites W2566958870 @default.
- W4387473764 cites W2648578256 @default.
- W4387473764 cites W2783241637 @default.
- W4387473764 cites W2884906162 @default.
- W4387473764 cites W2946640301 @default.
- W4387473764 cites W2967114421 @default.
- W4387473764 cites W2972445383 @default.
- W4387473764 cites W2981169003 @default.
- W4387473764 cites W2998553334 @default.
- W4387473764 cites W2999062487 @default.
- W4387473764 cites W3012359043 @default.
- W4387473764 cites W3013477797 @default.
- W4387473764 cites W3017023074 @default.
- W4387473764 cites W3036643198 @default.
- W4387473764 cites W3041338387 @default.
- W4387473764 cites W3041981321 @default.
- W4387473764 cites W3044546013 @default.
- W4387473764 cites W3097465463 @default.
- W4387473764 cites W3107071777 @default.
- W4387473764 cites W3120563239 @default.
- W4387473764 cites W3174638476 @default.
- W4387473764 cites W3183328294 @default.
- W4387473764 cites W3187732917 @default.
- W4387473764 cites W3210258470 @default.
- W4387473764 cites W4206568632 @default.
- W4387473764 cites W4212902412 @default.
- W4387473764 cites W4214817322 @default.
- W4387473764 cites W4220728792 @default.
- W4387473764 cites W4221134809 @default.
- W4387473764 cites W4281629107 @default.
- W4387473764 cites W4294042877 @default.
- W4387473764 cites W4306848258 @default.
- W4387473764 cites W4313256676 @default.
- W4387473764 cites W4361278128 @default.
- W4387473764 cites W4386387323 @default.
- W4387473764 cites W4386408494 @default.
- W4387473764 cites W614119048 @default.
- W4387473764 doi "https://doi.org/10.3390/math11204237" @default.
- W4387473764 hasPublicationYear "2023" @default.
- W4387473764 type Work @default.
- W4387473764 citedByCount "0" @default.
- W4387473764 crossrefType "journal-article" @default.
- W4387473764 hasAuthorship W4387473764A5024434626 @default.
- W4387473764 hasAuthorship W4387473764A5035626393 @default.
- W4387473764 hasAuthorship W4387473764A5041654385 @default.
- W4387473764 hasBestOaLocation W43874737641 @default.
- W4387473764 hasConcept C11413529 @default.
- W4387473764 hasConcept C119487961 @default.
- W4387473764 hasConcept C119857082 @default.
- W4387473764 hasConcept C12267149 @default.
- W4387473764 hasConcept C154945302 @default.
- W4387473764 hasConcept C169258074 @default.
- W4387473764 hasConcept C41008148 @default.
- W4387473764 hasConcept C50644808 @default.
- W4387473764 hasConcept C85617194 @default.
- W4387473764 hasConceptScore W4387473764C11413529 @default.
- W4387473764 hasConceptScore W4387473764C119487961 @default.
- W4387473764 hasConceptScore W4387473764C119857082 @default.
- W4387473764 hasConceptScore W4387473764C12267149 @default.
- W4387473764 hasConceptScore W4387473764C154945302 @default.
- W4387473764 hasConceptScore W4387473764C169258074 @default.
- W4387473764 hasConceptScore W4387473764C41008148 @default.
- W4387473764 hasConceptScore W4387473764C50644808 @default.
- W4387473764 hasConceptScore W4387473764C85617194 @default.
- W4387473764 hasIssue "20" @default.
- W4387473764 hasLocation W43874737641 @default.
- W4387473764 hasOpenAccess W4387473764 @default.
- W4387473764 hasPrimaryLocation W43874737641 @default.
- W4387473764 hasRelatedWork W10394924 @default.
- W4387473764 hasRelatedWork W1546989560 @default.
- W4387473764 hasRelatedWork W2004826645 @default.
- W4387473764 hasRelatedWork W2070977815 @default.
- W4387473764 hasRelatedWork W2241084252 @default.
- W4387473764 hasRelatedWork W2955796858 @default.
- W4387473764 hasRelatedWork W3135818052 @default.
- W4387473764 hasRelatedWork W4200112873 @default.
- W4387473764 hasRelatedWork W4224941037 @default.