Matches in SemOpenAlex for { <https://semopenalex.org/work/W4387474062> ?p ?o ?g. }
Showing items 1 to 91 of
91
with 100 items per page.
- W4387474062 endingPage "608" @default.
- W4387474062 startingPage "608" @default.
- W4387474062 abstract "Harmful algal blooms (HABs) are a serious threat to ecosystems and human health. The accurate prediction of HABs is crucial for their proactive preparation and management. While mechanism-based numerical modeling, such as the Environmental Fluid Dynamics Code (EFDC), has been widely used in the past, the recent development of machine learning technology with data-based processing capabilities has opened up new possibilities for HABs prediction. In this study, we developed and evaluated two types of machine learning-based models for HABs prediction: Gradient Boosting models (XGBoost, LightGBM, CatBoost) and attention-based CNN-LSTM models. We used Bayesian optimization techniques for hyperparameter tuning, and applied bagging and stacking ensemble techniques to obtain the final prediction results. The final prediction result was derived by applying the optimal hyperparameter and bagging and stacking ensemble techniques, and the applicability of prediction to HABs was evaluated. When predicting HABs with an ensemble technique, it is judged that the overall prediction performance can be improved by complementing the advantages of each model and averaging errors such as overfitting of individual models. Our study highlights the potential of machine learning-based models for HABs prediction and emphasizes the need to incorporate the latest technology into this important field." @default.
- W4387474062 created "2023-10-11" @default.
- W4387474062 creator A5000075308 @default.
- W4387474062 creator A5016847290 @default.
- W4387474062 creator A5053048690 @default.
- W4387474062 date "2023-10-10" @default.
- W4387474062 modified "2023-10-16" @default.
- W4387474062 title "Ensemble Machine Learning of Gradient Boosting (XGBoost, LightGBM, CatBoost) and Attention-Based CNN-LSTM for Harmful Algal Blooms Forecasting" @default.
- W4387474062 cites W2064675550 @default.
- W4387474062 cites W2150355110 @default.
- W4387474062 cites W2157331557 @default.
- W4387474062 cites W2806648736 @default.
- W4387474062 cites W2995846871 @default.
- W4387474062 cites W3035251314 @default.
- W4387474062 cites W3047552210 @default.
- W4387474062 cites W3102476541 @default.
- W4387474062 cites W3110770815 @default.
- W4387474062 cites W3176342080 @default.
- W4387474062 cites W3184853819 @default.
- W4387474062 cites W3207854470 @default.
- W4387474062 cites W3210466241 @default.
- W4387474062 cites W4282583990 @default.
- W4387474062 cites W4283258523 @default.
- W4387474062 cites W4292877209 @default.
- W4387474062 cites W4309574514 @default.
- W4387474062 cites W4310204380 @default.
- W4387474062 cites W4318561802 @default.
- W4387474062 cites W4318831690 @default.
- W4387474062 cites W4360831347 @default.
- W4387474062 doi "https://doi.org/10.3390/toxins15100608" @default.
- W4387474062 hasPublicationYear "2023" @default.
- W4387474062 type Work @default.
- W4387474062 citedByCount "0" @default.
- W4387474062 crossrefType "journal-article" @default.
- W4387474062 hasAuthorship W4387474062A5000075308 @default.
- W4387474062 hasAuthorship W4387474062A5016847290 @default.
- W4387474062 hasAuthorship W4387474062A5053048690 @default.
- W4387474062 hasBestOaLocation W43874740621 @default.
- W4387474062 hasConcept C10485038 @default.
- W4387474062 hasConcept C119857082 @default.
- W4387474062 hasConcept C119898033 @default.
- W4387474062 hasConcept C12267149 @default.
- W4387474062 hasConcept C141404830 @default.
- W4387474062 hasConcept C154945302 @default.
- W4387474062 hasConcept C169258074 @default.
- W4387474062 hasConcept C22019652 @default.
- W4387474062 hasConcept C2778049539 @default.
- W4387474062 hasConcept C41008148 @default.
- W4387474062 hasConcept C45942800 @default.
- W4387474062 hasConcept C46686674 @default.
- W4387474062 hasConcept C50644808 @default.
- W4387474062 hasConcept C52001869 @default.
- W4387474062 hasConcept C70153297 @default.
- W4387474062 hasConcept C8642999 @default.
- W4387474062 hasConceptScore W4387474062C10485038 @default.
- W4387474062 hasConceptScore W4387474062C119857082 @default.
- W4387474062 hasConceptScore W4387474062C119898033 @default.
- W4387474062 hasConceptScore W4387474062C12267149 @default.
- W4387474062 hasConceptScore W4387474062C141404830 @default.
- W4387474062 hasConceptScore W4387474062C154945302 @default.
- W4387474062 hasConceptScore W4387474062C169258074 @default.
- W4387474062 hasConceptScore W4387474062C22019652 @default.
- W4387474062 hasConceptScore W4387474062C2778049539 @default.
- W4387474062 hasConceptScore W4387474062C41008148 @default.
- W4387474062 hasConceptScore W4387474062C45942800 @default.
- W4387474062 hasConceptScore W4387474062C46686674 @default.
- W4387474062 hasConceptScore W4387474062C50644808 @default.
- W4387474062 hasConceptScore W4387474062C52001869 @default.
- W4387474062 hasConceptScore W4387474062C70153297 @default.
- W4387474062 hasConceptScore W4387474062C8642999 @default.
- W4387474062 hasFunder F4320326584 @default.
- W4387474062 hasIssue "10" @default.
- W4387474062 hasLocation W43874740621 @default.
- W4387474062 hasOpenAccess W4387474062 @default.
- W4387474062 hasPrimaryLocation W43874740621 @default.
- W4387474062 hasRelatedWork W2200000192 @default.
- W4387474062 hasRelatedWork W2395916875 @default.
- W4387474062 hasRelatedWork W2405673391 @default.
- W4387474062 hasRelatedWork W2920302751 @default.
- W4387474062 hasRelatedWork W2966761695 @default.
- W4387474062 hasRelatedWork W3103707007 @default.
- W4387474062 hasRelatedWork W3169687406 @default.
- W4387474062 hasRelatedWork W3206613651 @default.
- W4387474062 hasRelatedWork W4213015601 @default.
- W4387474062 hasRelatedWork W4286902601 @default.
- W4387474062 hasVolume "15" @default.
- W4387474062 isParatext "false" @default.
- W4387474062 isRetracted "false" @default.
- W4387474062 workType "article" @default.