Matches in SemOpenAlex for { <https://semopenalex.org/work/W4387476522> ?p ?o ?g. }
Showing items 1 to 89 of
89
with 100 items per page.
- W4387476522 endingPage "18" @default.
- W4387476522 startingPage "1" @default.
- W4387476522 abstract "Summary The rate of penetration (ROP) is a critical parameter in drilling operations, essential for optimizing the drilling process and enhancing drilling speed and efficiency. Traditional and statistical models are inadequate for predicting ROP in complex formations, as they fail to conduct a comprehensive analysis of method validity and data validity. In this study, geological conditions parameters, mechanical parameters, and drilling fluid parameters were extracted as prediction parameters, and an intelligent ROP prediction method was constructed under method-data dual validity analysis. The effectiveness of the ROP prediction method is studied by comparing five machine learning algorithms. The data validity of ROP prediction is also studied by changing the input data type, input data dimension, and input data sampling method. The results show that the effectiveness of the long short-term memory (LSTM) neural network method was found to be superior to support vector regression (SVR), backpropagation (BP) neural network, deep belief neural network (DBN), and convolutional neural network (CNN) methods. For data validity, the best input data type for ROP prediction is geological conditions parameters after principal component analysis (PCA) combined with mechanical parameters and drilling fluid parameters. The lower limit of input data dimension validity is seven input parameters, and the accuracy of prediction results increases with the increase of data dimension. The optimal data sampling method is one point per meter, and the error of the prediction result increases and then decreases with the increase of sampling points. Through step-by-step analysis of method validity, input data type, input data dimension, and input data sampling method, the range, size, and mean of error values of ROP prediction results were significantly reduced, and the mean absolute percentage error (MAPE) of the prediction results of the test set is only 18.40%, while the MAPE of the prediction results of the case study is only 11.60%. The results of this study can help to accurately predict ROP, achieve drilling speedup in complex formations, and promote the efficient development of hydrocarbons in the study area." @default.
- W4387476522 created "2023-10-11" @default.
- W4387476522 creator A5002437900 @default.
- W4387476522 creator A5019166421 @default.
- W4387476522 creator A5045856000 @default.
- W4387476522 creator A5046345934 @default.
- W4387476522 creator A5053511826 @default.
- W4387476522 creator A5088926172 @default.
- W4387476522 date "2023-10-01" @default.
- W4387476522 modified "2023-10-13" @default.
- W4387476522 title "Intelligent Prediction of Drilling Rate of Penetration Based on Method-Data Dual Validity Analysis" @default.
- W4387476522 cites W2079766306 @default.
- W4387476522 cites W2139673014 @default.
- W4387476522 cites W2322071875 @default.
- W4387476522 cites W2403126542 @default.
- W4387476522 cites W2589806773 @default.
- W4387476522 cites W2625209857 @default.
- W4387476522 cites W2891589939 @default.
- W4387476522 cites W2896749363 @default.
- W4387476522 cites W2943521617 @default.
- W4387476522 cites W2946517338 @default.
- W4387476522 cites W2955140379 @default.
- W4387476522 cites W2966197939 @default.
- W4387476522 cites W3003896007 @default.
- W4387476522 cites W3008508208 @default.
- W4387476522 cites W3033247985 @default.
- W4387476522 cites W3033790883 @default.
- W4387476522 cites W3081081564 @default.
- W4387476522 cites W3096718018 @default.
- W4387476522 cites W3109737138 @default.
- W4387476522 cites W3136648156 @default.
- W4387476522 cites W3143390633 @default.
- W4387476522 cites W3161827993 @default.
- W4387476522 cites W3170876782 @default.
- W4387476522 cites W3174108661 @default.
- W4387476522 cites W3217103806 @default.
- W4387476522 cites W4200612571 @default.
- W4387476522 cites W4205478815 @default.
- W4387476522 cites W4213113753 @default.
- W4387476522 cites W4224293184 @default.
- W4387476522 cites W4281905003 @default.
- W4387476522 cites W4282840164 @default.
- W4387476522 doi "https://doi.org/10.2118/217977-pa" @default.
- W4387476522 hasPublicationYear "2023" @default.
- W4387476522 type Work @default.
- W4387476522 citedByCount "0" @default.
- W4387476522 crossrefType "journal-article" @default.
- W4387476522 hasAuthorship W4387476522A5002437900 @default.
- W4387476522 hasAuthorship W4387476522A5019166421 @default.
- W4387476522 hasAuthorship W4387476522A5045856000 @default.
- W4387476522 hasAuthorship W4387476522A5046345934 @default.
- W4387476522 hasAuthorship W4387476522A5053511826 @default.
- W4387476522 hasAuthorship W4387476522A5088926172 @default.
- W4387476522 hasConcept C12267149 @default.
- W4387476522 hasConcept C124101348 @default.
- W4387476522 hasConcept C154945302 @default.
- W4387476522 hasConcept C155032097 @default.
- W4387476522 hasConcept C21080849 @default.
- W4387476522 hasConcept C41008148 @default.
- W4387476522 hasConcept C50644808 @default.
- W4387476522 hasConcept C77088390 @default.
- W4387476522 hasConcept C92446256 @default.
- W4387476522 hasConceptScore W4387476522C12267149 @default.
- W4387476522 hasConceptScore W4387476522C124101348 @default.
- W4387476522 hasConceptScore W4387476522C154945302 @default.
- W4387476522 hasConceptScore W4387476522C155032097 @default.
- W4387476522 hasConceptScore W4387476522C21080849 @default.
- W4387476522 hasConceptScore W4387476522C41008148 @default.
- W4387476522 hasConceptScore W4387476522C50644808 @default.
- W4387476522 hasConceptScore W4387476522C77088390 @default.
- W4387476522 hasConceptScore W4387476522C92446256 @default.
- W4387476522 hasLocation W43874765221 @default.
- W4387476522 hasOpenAccess W4387476522 @default.
- W4387476522 hasPrimaryLocation W43874765221 @default.
- W4387476522 hasRelatedWork W1495379181 @default.
- W4387476522 hasRelatedWork W1863534956 @default.
- W4387476522 hasRelatedWork W1966421350 @default.
- W4387476522 hasRelatedWork W2088845016 @default.
- W4387476522 hasRelatedWork W2128396103 @default.
- W4387476522 hasRelatedWork W2157746493 @default.
- W4387476522 hasRelatedWork W2371065793 @default.
- W4387476522 hasRelatedWork W2894173309 @default.
- W4387476522 hasRelatedWork W4239286941 @default.
- W4387476522 hasRelatedWork W589102260 @default.
- W4387476522 isParatext "false" @default.
- W4387476522 isRetracted "false" @default.
- W4387476522 workType "article" @default.