Matches in SemOpenAlex for { <https://semopenalex.org/work/W4387476775> ?p ?o ?g. }
Showing items 1 to 69 of
69
with 100 items per page.
- W4387476775 endingPage "S176" @default.
- W4387476775 startingPage "S176" @default.
- W4387476775 abstract "Methods for predicting major depressive disorder (MDD) represent important tools for identifying individuals at increased risk for the disorder. In individuals who have not been directly screened for MDD using structured interviews, predictive approaches which utilize existing medical record data may be particularly useful for identifying patients who warrant such screenings. This research has been conducted using the UK Biobank Resource (UKB, ID30782). In this study, we investigate the utility of blood-based biomarkers, including 303 markers from blood chemistry and NMR assays, to predict various MDD-related phenotypes in the UKB. Using the CIDI-SF assessed in ∼⅓ of the UKB participants, we identified strictly-defined MDD cases based on self-reported symptoms and associated impairment: 45,341 probable (with ≥4 symptoms) and 39,524 definite cases (with ≥5 symptoms), along with 70,631 controls. Additionally, we defined three broad depression phenotypes: help-seeking (173,153 cases, 324,107 controls), cardinal depression symptoms (31,835 cases, 89,520 controls), and depression diagnosis (either self-reported or ICD-10 codes in electronic medical records: 60,517 cases, 441,963 controls). We apply 3 broad classes of machine learning (ML) algorithms, elastic nets, gradient boosting machines (GBM), and MBOOST, to predict these phenotypes, as well as CIDI-SF symptom count, solely using blood-based biomarkers. To assess prediction performance, we compare adjusted R-squared (r2 adj) values for covariate-only models using age and sex to predict the outcomes against the ML models utilizing blood-based measures in addition to covariates. We also estimate the genetic correlation with measured MDD phenotypes, as well as the Psychiatric Genomics Consortium (PGC) MDD. Furthermore, to demonstrate the broad utility of such a blood-based biomarker prediction approach, as well as generate data to serve as benchmark comparisons, we apply the same predictive approach to BMI, body fat percentage, height, and alcohol consumption, defined as drinks per week (DPW). Preliminary results show that predicted DPW were moderately well-predicted, with the best performing ML algorithm, GBM, producing adjusted R-squared of 0.354. However, MDD symptom count was not well predicted by blood-based biomarkers with the GBM prediction producing adjusted R-squared of 0.002. Given this performance, we expanded the framework to include all available UKB phenotypes as predictors in the MAGIC-LASSO approach and predicted MDD symptom counts with a phenotypic correlation of 0.69 between observed and measured symptom count. Genetic correlation between the predicted scores were 0.88 and 0.9 with measured scores and PGC MDD, respectively. These results support extending the MAGIC-LASSO approach to prediction via boosting algorithms and applying this approach to additional UKB MDD phenotypes. These results demonstrate blood-based biomarkers and ML based models can be useful in predicting some outcomes, such as DPW, but not MDD in the current implementation. Expanding the prediction space to include all available phenotypes results in improved prediction for MDD phenotypes. In persons where strictly-defined MDD is not directly assessed, such predictions may provide a useful screener to identify individuals for follow up clinical assessments and expand sample sizes for statistical genetic analyses." @default.
- W4387476775 created "2023-10-11" @default.
- W4387476775 creator A5018746391 @default.
- W4387476775 creator A5028022379 @default.
- W4387476775 creator A5028511728 @default.
- W4387476775 creator A5040681967 @default.
- W4387476775 creator A5053938584 @default.
- W4387476775 date "2023-10-01" @default.
- W4387476775 modified "2023-10-16" @default.
- W4387476775 title "T27. BLOOD-BASED BIOMARKERS TO PREDICT MAJOR DEPRESSIVE DISORDER PHENOTYPES: A MACHINE LEARNING APPROACH" @default.
- W4387476775 doi "https://doi.org/10.1016/j.euroneuro.2023.08.314" @default.
- W4387476775 hasPublicationYear "2023" @default.
- W4387476775 type Work @default.
- W4387476775 citedByCount "0" @default.
- W4387476775 crossrefType "journal-article" @default.
- W4387476775 hasAuthorship W4387476775A5018746391 @default.
- W4387476775 hasAuthorship W4387476775A5028022379 @default.
- W4387476775 hasAuthorship W4387476775A5028511728 @default.
- W4387476775 hasAuthorship W4387476775A5040681967 @default.
- W4387476775 hasAuthorship W4387476775A5053938584 @default.
- W4387476775 hasConcept C118552586 @default.
- W4387476775 hasConcept C119043178 @default.
- W4387476775 hasConcept C119857082 @default.
- W4387476775 hasConcept C126322002 @default.
- W4387476775 hasConcept C139719470 @default.
- W4387476775 hasConcept C162324750 @default.
- W4387476775 hasConcept C195910791 @default.
- W4387476775 hasConcept C199360897 @default.
- W4387476775 hasConcept C2776867660 @default.
- W4387476775 hasConcept C2780051608 @default.
- W4387476775 hasConcept C2780733359 @default.
- W4387476775 hasConcept C41008148 @default.
- W4387476775 hasConcept C70410870 @default.
- W4387476775 hasConcept C71924100 @default.
- W4387476775 hasConcept C83852419 @default.
- W4387476775 hasConceptScore W4387476775C118552586 @default.
- W4387476775 hasConceptScore W4387476775C119043178 @default.
- W4387476775 hasConceptScore W4387476775C119857082 @default.
- W4387476775 hasConceptScore W4387476775C126322002 @default.
- W4387476775 hasConceptScore W4387476775C139719470 @default.
- W4387476775 hasConceptScore W4387476775C162324750 @default.
- W4387476775 hasConceptScore W4387476775C195910791 @default.
- W4387476775 hasConceptScore W4387476775C199360897 @default.
- W4387476775 hasConceptScore W4387476775C2776867660 @default.
- W4387476775 hasConceptScore W4387476775C2780051608 @default.
- W4387476775 hasConceptScore W4387476775C2780733359 @default.
- W4387476775 hasConceptScore W4387476775C41008148 @default.
- W4387476775 hasConceptScore W4387476775C70410870 @default.
- W4387476775 hasConceptScore W4387476775C71924100 @default.
- W4387476775 hasConceptScore W4387476775C83852419 @default.
- W4387476775 hasLocation W43874767751 @default.
- W4387476775 hasOpenAccess W4387476775 @default.
- W4387476775 hasPrimaryLocation W43874767751 @default.
- W4387476775 hasRelatedWork W1462775415 @default.
- W4387476775 hasRelatedWork W1535483699 @default.
- W4387476775 hasRelatedWork W1987896487 @default.
- W4387476775 hasRelatedWork W2068445477 @default.
- W4387476775 hasRelatedWork W2333832190 @default.
- W4387476775 hasRelatedWork W2391332606 @default.
- W4387476775 hasRelatedWork W2396009657 @default.
- W4387476775 hasRelatedWork W2799110842 @default.
- W4387476775 hasRelatedWork W3032826521 @default.
- W4387476775 hasRelatedWork W4229853287 @default.
- W4387476775 hasVolume "75" @default.
- W4387476775 isParatext "false" @default.
- W4387476775 isRetracted "false" @default.
- W4387476775 workType "article" @default.