Matches in SemOpenAlex for { <https://semopenalex.org/work/W4387476787> ?p ?o ?g. }
Showing items 1 to 77 of
77
with 100 items per page.
- W4387476787 endingPage "S83" @default.
- W4387476787 startingPage "S82" @default.
- W4387476787 abstract "Although there are no established biomarkers for depression currently in clinical use, biobanks with electronic health record (EHR) linkages now enable conducting large-scale metabolome-wide studies to identify blood metabolites associated with depression. However, due to the substantial comorbidity in the clinical representation of depression, a more granular approach is needed to identify biomarkers associated with specific depressive symptom clusters. The aim of this study is to utilize longitudinal EHR data combined with questionnaire-based self-reported lifestyle and psychosocial factors (LPSF) to discover associations between depression and blood plasma metabolites determined by NMR. Additionally, associations between psychiatric-related polygenic risk scores (PRS) and metabolites are explored. Finally, the prediction power of the metabolites is measured by training and evaluating a machine learning model. We used the Estonian Biobank data source (N=200,000), which is linked to the national EHR databases, covering years 2004-2021. After filtering, 227 blood metabolites measured using the NMR Nightingale panel were used for association testing. Case-control metabolome-wide association study was conducted for the ICD-10 based depression (codes F32 and F33). As the majority of depression cases in Estonian Biobank are female and metabolic profile is influenced by sex the analysis is done separately for females and males. All results given in the abstract are for the female group. LPSF were assessed with a comprehensive Mental Health Online Survey (N=86,000). To identify clusters of associations between metabolites and LPSF (N=100) / PRS (N=36), Hierarchical All-against-All Association Testing (HAllA) was implemented for clustering. Random Forest (RF) binary classification model was trained for predicting ICD-10-based depression using only metabolite measures and age (train test split 90:10). We identified 7303 individuals with depression diagnosed no more than 6 months before or after the blood sample was collected (mean age 47.5 y) and matched 4 controls for every case with no psychiatric diagnoses and same age. We identified 89 metabolites associated with depression (p-value adjusted for multiple testing). The depression diagnosis was associated with cholesterol, lipoproteins, fatty and amino acids measures. We detected 569 statistically significant clusters of LPSF and metabolite measures (FDR 0.2), the top one being alcohol and tobacco usage habits with different cholesterol measures. With similar methods using PRS values 328 clusters were identified, revealing for example HDL cholesterols associations with insomnia, body mass index, ADHD, education attainment and autism PRS values. The RF model trained to predict depression diagnosis based on only blood metabolites resulted in 0.64 AUC ROC on test data set, meaning that the model is not directly suitable for clinical use, but the metabolites contain predictive value for the depression phenotype. By leveraging large-scale biobank, omics, EHR and questionnaire data, we identified a metabolomic profile associated with depression, its symptom clusters and genetic predisposition. These results significantly contribute to disentangling the biological mechanisms underlying depression, although future replication efforts are warranted. Analysis using males and taking into account sex specific differences are planned next." @default.
- W4387476787 created "2023-10-11" @default.
- W4387476787 creator A5026827013 @default.
- W4387476787 creator A5029938811 @default.
- W4387476787 creator A5035834658 @default.
- W4387476787 creator A5047763274 @default.
- W4387476787 creator A5049036974 @default.
- W4387476787 creator A5061577848 @default.
- W4387476787 creator A5065418263 @default.
- W4387476787 date "2023-10-01" @default.
- W4387476787 modified "2023-10-16" @default.
- W4387476787 title "50. IDENTIFICATION OF DEPRESSION-RELATED METABOLIC PROFILE AND ITS ASSOCIATIONS WITH PSYCHIATRIC SYMPTOMS AND POLYGENIC SCORES" @default.
- W4387476787 doi "https://doi.org/10.1016/j.euroneuro.2023.08.156" @default.
- W4387476787 hasPublicationYear "2023" @default.
- W4387476787 type Work @default.
- W4387476787 citedByCount "0" @default.
- W4387476787 crossrefType "journal-article" @default.
- W4387476787 hasAuthorship W4387476787A5026827013 @default.
- W4387476787 hasAuthorship W4387476787A5029938811 @default.
- W4387476787 hasAuthorship W4387476787A5035834658 @default.
- W4387476787 hasAuthorship W4387476787A5047763274 @default.
- W4387476787 hasAuthorship W4387476787A5049036974 @default.
- W4387476787 hasAuthorship W4387476787A5061577848 @default.
- W4387476787 hasAuthorship W4387476787A5065418263 @default.
- W4387476787 hasConcept C116567970 @default.
- W4387476787 hasConcept C118552586 @default.
- W4387476787 hasConcept C126322002 @default.
- W4387476787 hasConcept C135870905 @default.
- W4387476787 hasConcept C139719470 @default.
- W4387476787 hasConcept C142853389 @default.
- W4387476787 hasConcept C150966472 @default.
- W4387476787 hasConcept C15744967 @default.
- W4387476787 hasConcept C162324750 @default.
- W4387476787 hasConcept C2776867660 @default.
- W4387476787 hasConcept C2777477808 @default.
- W4387476787 hasConcept C2779159551 @default.
- W4387476787 hasConcept C542102704 @default.
- W4387476787 hasConcept C60644358 @default.
- W4387476787 hasConcept C70410870 @default.
- W4387476787 hasConcept C71924100 @default.
- W4387476787 hasConcept C86803240 @default.
- W4387476787 hasConceptScore W4387476787C116567970 @default.
- W4387476787 hasConceptScore W4387476787C118552586 @default.
- W4387476787 hasConceptScore W4387476787C126322002 @default.
- W4387476787 hasConceptScore W4387476787C135870905 @default.
- W4387476787 hasConceptScore W4387476787C139719470 @default.
- W4387476787 hasConceptScore W4387476787C142853389 @default.
- W4387476787 hasConceptScore W4387476787C150966472 @default.
- W4387476787 hasConceptScore W4387476787C15744967 @default.
- W4387476787 hasConceptScore W4387476787C162324750 @default.
- W4387476787 hasConceptScore W4387476787C2776867660 @default.
- W4387476787 hasConceptScore W4387476787C2777477808 @default.
- W4387476787 hasConceptScore W4387476787C2779159551 @default.
- W4387476787 hasConceptScore W4387476787C542102704 @default.
- W4387476787 hasConceptScore W4387476787C60644358 @default.
- W4387476787 hasConceptScore W4387476787C70410870 @default.
- W4387476787 hasConceptScore W4387476787C71924100 @default.
- W4387476787 hasConceptScore W4387476787C86803240 @default.
- W4387476787 hasLocation W43874767871 @default.
- W4387476787 hasOpenAccess W4387476787 @default.
- W4387476787 hasPrimaryLocation W43874767871 @default.
- W4387476787 hasRelatedWork W2024651825 @default.
- W4387476787 hasRelatedWork W2105971613 @default.
- W4387476787 hasRelatedWork W2215322033 @default.
- W4387476787 hasRelatedWork W2588558030 @default.
- W4387476787 hasRelatedWork W3113746618 @default.
- W4387476787 hasRelatedWork W4226051228 @default.
- W4387476787 hasRelatedWork W4226156868 @default.
- W4387476787 hasRelatedWork W4244742767 @default.
- W4387476787 hasRelatedWork W4248738672 @default.
- W4387476787 hasRelatedWork W4285087457 @default.
- W4387476787 hasVolume "75" @default.
- W4387476787 isParatext "false" @default.
- W4387476787 isRetracted "false" @default.
- W4387476787 workType "article" @default.