Matches in SemOpenAlex for { <https://semopenalex.org/work/W4387476799> ?p ?o ?g. }
Showing items 1 to 54 of
54
with 100 items per page.
- W4387476799 endingPage "S5" @default.
- W4387476799 startingPage "S5" @default.
- W4387476799 abstract "Genome-wide association studies (GWAS) identify associated variants but do not tell the whole story. The causal SNPs and genes within most genome-wide significant loci remain unknown, due to linkage disequilibrium (LD) within these regions. Fine-mapping is a rapid, scalable, and cost-effective approach to computationally prioritize likely causal genes and single nucleotide polymorphisms (SNPs) for functional laboratory experiments. Specifically, fine-mapping methods can predict casual variants in putative regulatory elements that may modulate transcriptional activity of key genes contributing to one or many endophenotypes. Recently, these methods have expanded to predict tissue, cell-type, and context-specific activity of risk variants. Bridging the gap between variant and function is a key challenge, and this symposium will showcase innovations and insights from three different perspectives: (i) implementation of statistical and functional fine-mapping and conditional analysis to unravel the genetic etiology of complex disorders such as schizophrenia (SCZ) and bipolar disorder (BD), (ii) a new and powerful method for fine-mapping of multi-ancestry GWAS and (iii) functional validation of fine-mapping results using high-throughput sequencing and screening techniques. Georgia Panagiotaropoulou, MSc will present a comprehensive analysis of genetic variation in the major histocompatibility complex (MHC) locus in European (EUR) and East-Asian (EAS) SCZ cohorts, leading to the prioritization of likely causal SCZ variants. Maria Koromina, PhD will present fine-mapping of GWAS BD risk loci, using a statistical and functional fine-mapping pipeline which integrates a suite of methods. Results of computational validation analyses will be discussed, such as examination of overlap with functional genomic features from BD-relevant tissues and cell-types, and development of fine-mapping-informed polygenic risk scores. Kai Yuan, PhD will present an unpublished and novel method named SuSiEx for multi-ancestry fine-mapping, which leverages the LD structure across ancestries to improve fine-mapping resolution. Finally, Kayla Townsley, BSc will present the application of high-throughput assays, such as massively parallel reporter assays (MPRAs) and single-cell CRISPR screens in hiPSC-models of neurodevelopment to validate predicted causal alleles. These methods can validate prediction models at a meaningful scale and link them to transcriptomic, epigenomic, and phenotypic effects in a context and cell-type specific manner. Discussant Prof. Howard Edenberg, PhD will summarize the state of the field of fine-mapping and functional in vitro validation methods and provide perspectives on future research and the crucial next steps to translate results to clinical prediction, treatment, and prevention." @default.
- W4387476799 created "2023-10-11" @default.
- W4387476799 creator A5043145762 @default.
- W4387476799 creator A5044635265 @default.
- W4387476799 creator A5075274005 @default.
- W4387476799 date "2023-10-01" @default.
- W4387476799 modified "2023-10-16" @default.
- W4387476799 title "VARIANT TO FUNCTION: INNOVATION AND INSIGHTS FROM FINE-MAPPING AND HIGH-THROUGHPUT ASSAYS" @default.
- W4387476799 doi "https://doi.org/10.1016/j.euroneuro.2023.08.018" @default.
- W4387476799 hasPublicationYear "2023" @default.
- W4387476799 type Work @default.
- W4387476799 citedByCount "0" @default.
- W4387476799 crossrefType "journal-article" @default.
- W4387476799 hasAuthorship W4387476799A5043145762 @default.
- W4387476799 hasAuthorship W4387476799A5044635265 @default.
- W4387476799 hasAuthorship W4387476799A5075274005 @default.
- W4387476799 hasBestOaLocation W43874767991 @default.
- W4387476799 hasConcept C104317684 @default.
- W4387476799 hasConcept C106208931 @default.
- W4387476799 hasConcept C135763542 @default.
- W4387476799 hasConcept C153209595 @default.
- W4387476799 hasConcept C186413461 @default.
- W4387476799 hasConcept C35605836 @default.
- W4387476799 hasConcept C54355233 @default.
- W4387476799 hasConcept C70721500 @default.
- W4387476799 hasConcept C86803240 @default.
- W4387476799 hasConceptScore W4387476799C104317684 @default.
- W4387476799 hasConceptScore W4387476799C106208931 @default.
- W4387476799 hasConceptScore W4387476799C135763542 @default.
- W4387476799 hasConceptScore W4387476799C153209595 @default.
- W4387476799 hasConceptScore W4387476799C186413461 @default.
- W4387476799 hasConceptScore W4387476799C35605836 @default.
- W4387476799 hasConceptScore W4387476799C54355233 @default.
- W4387476799 hasConceptScore W4387476799C70721500 @default.
- W4387476799 hasConceptScore W4387476799C86803240 @default.
- W4387476799 hasLocation W43874767991 @default.
- W4387476799 hasOpenAccess W4387476799 @default.
- W4387476799 hasPrimaryLocation W43874767991 @default.
- W4387476799 hasRelatedWork W1523912222 @default.
- W4387476799 hasRelatedWork W1971424770 @default.
- W4387476799 hasRelatedWork W2039373331 @default.
- W4387476799 hasRelatedWork W2093214227 @default.
- W4387476799 hasRelatedWork W2102796473 @default.
- W4387476799 hasRelatedWork W2111842731 @default.
- W4387476799 hasRelatedWork W2391803837 @default.
- W4387476799 hasRelatedWork W2410452464 @default.
- W4387476799 hasRelatedWork W2473486371 @default.
- W4387476799 hasRelatedWork W4361273069 @default.
- W4387476799 hasVolume "75" @default.
- W4387476799 isParatext "false" @default.
- W4387476799 isRetracted "false" @default.
- W4387476799 workType "article" @default.