Matches in SemOpenAlex for { <https://semopenalex.org/work/W4387476918> ?p ?o ?g. }
Showing items 1 to 90 of
90
with 100 items per page.
- W4387476918 endingPage "126871" @default.
- W4387476918 startingPage "126871" @default.
- W4387476918 abstract "Identifying an optimal set of nodes that can maximize the spread of influence in a network is a crucial challenge in network science. It has numerous applications such as epidemic control and rumor containment. However, most existing techniques are limited by their high computational costs, making them impractical for graphs with millions of nodes. Moreover, the previous approaches have primarily focused on the structural characteristics of the network while the characteristics of information diffusion are ignored. This paper proposes a deep reinforcement learning framework, DeepELE, to bridge these gaps. DeepELE incorporates a graph embedding technique to represent the graph states and applies a deep reinforcement learning method to learn the policy automatically. Note that we assess the contribution of links to spreading processes and further account for the diffusion-related contribution along with the graph structure information into convolutional neural and the Q network. Extensive experiments on both synthetic and real-world networks validate the efficiency and efficacy of DeepELE. The results demonstrate that DeepELE significantly outperforms the state-of-the-art methods, especially for large-scale networks with millions of nodes." @default.
- W4387476918 created "2023-10-11" @default.
- W4387476918 creator A5045921163 @default.
- W4387476918 creator A5047545640 @default.
- W4387476918 date "2023-10-01" @default.
- W4387476918 modified "2023-10-16" @default.
- W4387476918 title "Identifying critical nodes via link equations and deep reinforcement learning" @default.
- W4387476918 cites W1931400479 @default.
- W4387476918 cites W1967385589 @default.
- W4387476918 cites W1971937094 @default.
- W4387476918 cites W1979513221 @default.
- W4387476918 cites W2025844353 @default.
- W4387476918 cites W2033198212 @default.
- W4387476918 cites W2034413844 @default.
- W4387476918 cites W2038195874 @default.
- W4387476918 cites W2066636486 @default.
- W4387476918 cites W2080236613 @default.
- W4387476918 cites W2081375228 @default.
- W4387476918 cites W2107100412 @default.
- W4387476918 cites W2132914434 @default.
- W4387476918 cites W2407573058 @default.
- W4387476918 cites W2782195772 @default.
- W4387476918 cites W3028110392 @default.
- W4387476918 cites W3089164705 @default.
- W4387476918 cites W3100754494 @default.
- W4387476918 cites W3100777813 @default.
- W4387476918 cites W3103054528 @default.
- W4387476918 cites W3139071578 @default.
- W4387476918 cites W3187666087 @default.
- W4387476918 cites W3196792588 @default.
- W4387476918 cites W3199461261 @default.
- W4387476918 cites W4283730771 @default.
- W4387476918 cites W4285024875 @default.
- W4387476918 cites W4285195085 @default.
- W4387476918 cites W4295129439 @default.
- W4387476918 cites W4308518849 @default.
- W4387476918 cites W4317931697 @default.
- W4387476918 doi "https://doi.org/10.1016/j.neucom.2023.126871" @default.
- W4387476918 hasPublicationYear "2023" @default.
- W4387476918 type Work @default.
- W4387476918 citedByCount "0" @default.
- W4387476918 crossrefType "journal-article" @default.
- W4387476918 hasAuthorship W4387476918A5045921163 @default.
- W4387476918 hasAuthorship W4387476918A5047545640 @default.
- W4387476918 hasConcept C108583219 @default.
- W4387476918 hasConcept C119857082 @default.
- W4387476918 hasConcept C132525143 @default.
- W4387476918 hasConcept C136764020 @default.
- W4387476918 hasConcept C137753397 @default.
- W4387476918 hasConcept C154945302 @default.
- W4387476918 hasConcept C17744445 @default.
- W4387476918 hasConcept C2780469804 @default.
- W4387476918 hasConcept C34947359 @default.
- W4387476918 hasConcept C39549134 @default.
- W4387476918 hasConcept C41008148 @default.
- W4387476918 hasConcept C41608201 @default.
- W4387476918 hasConcept C80444323 @default.
- W4387476918 hasConcept C97541855 @default.
- W4387476918 hasConceptScore W4387476918C108583219 @default.
- W4387476918 hasConceptScore W4387476918C119857082 @default.
- W4387476918 hasConceptScore W4387476918C132525143 @default.
- W4387476918 hasConceptScore W4387476918C136764020 @default.
- W4387476918 hasConceptScore W4387476918C137753397 @default.
- W4387476918 hasConceptScore W4387476918C154945302 @default.
- W4387476918 hasConceptScore W4387476918C17744445 @default.
- W4387476918 hasConceptScore W4387476918C2780469804 @default.
- W4387476918 hasConceptScore W4387476918C34947359 @default.
- W4387476918 hasConceptScore W4387476918C39549134 @default.
- W4387476918 hasConceptScore W4387476918C41008148 @default.
- W4387476918 hasConceptScore W4387476918C41608201 @default.
- W4387476918 hasConceptScore W4387476918C80444323 @default.
- W4387476918 hasConceptScore W4387476918C97541855 @default.
- W4387476918 hasLocation W43874769181 @default.
- W4387476918 hasOpenAccess W4387476918 @default.
- W4387476918 hasPrimaryLocation W43874769181 @default.
- W4387476918 hasRelatedWork W1969689725 @default.
- W4387476918 hasRelatedWork W2111786937 @default.
- W4387476918 hasRelatedWork W2950946391 @default.
- W4387476918 hasRelatedWork W2954128454 @default.
- W4387476918 hasRelatedWork W2999398081 @default.
- W4387476918 hasRelatedWork W3007491431 @default.
- W4387476918 hasRelatedWork W3121544743 @default.
- W4387476918 hasRelatedWork W4210291460 @default.
- W4387476918 hasRelatedWork W4313890087 @default.
- W4387476918 hasRelatedWork W4384518057 @default.
- W4387476918 isParatext "false" @default.
- W4387476918 isRetracted "false" @default.
- W4387476918 workType "article" @default.