Matches in SemOpenAlex for { <https://semopenalex.org/work/W4387477314> ?p ?o ?g. }
- W4387477314 abstract "Abstract The growing demand for more computing resources has increased the overall energy consumption of computer systems. To support this increasing demand, power and energy consumption must be considered as a constraint on software execution. Modern architectures provide tools for managing the power constraints of a system directly. The Intel Power Cap is a relatively new tool developed to give users fine-grained control over power usage at the central processing unit (CPU) level. The complexity of these tools, in addition to the high variety of modern heterogeneous architectures, hinders predictions of the energy consumption and the performance of any target software. The application of power capping technologies usually leads to the bi-objective optimization problem for energy efficiency and execution time but optimal power constraints could also produce exceeding performance losses. Thus, methods and tools are needed to calculate the proper parameters for power capping technologies, and to optimize energy efficiency. We propose a methodology to analyze the performance and the energy efficiency trade-offs using this power cap technology for a given application. A Pareto front is extracted for the multi-objective performance and energy problem, which represents multiple feasible configurations for both objectives. An extensive experimentation is carried out to categorize the different applications to determine the overall optimal power cap configurations. We propose the use of machine learning (ML) clustering techniques to categorize each application in the target architecture. The use of ML allows us to automate the process and simplifies the effort required to solve the optimization problem. A practical case is presented where we categorize the applications using ML techniques, with the possibility of adding a new application into an existing categorization." @default.
- W4387477314 created "2023-10-11" @default.
- W4387477314 creator A5021916094 @default.
- W4387477314 creator A5047338721 @default.
- W4387477314 creator A5048793835 @default.
- W4387477314 creator A5077098801 @default.
- W4387477314 creator A5081325239 @default.
- W4387477314 date "2023-10-10" @default.
- W4387477314 modified "2023-10-16" @default.
- W4387477314 title "Energy efficient power cap configurations through Pareto front analysis and machine learning categorization" @default.
- W4387477314 cites W1973765113 @default.
- W4387477314 cites W1977661221 @default.
- W4387477314 cites W1990779289 @default.
- W4387477314 cites W1993815837 @default.
- W4387477314 cites W2032136713 @default.
- W4387477314 cites W2046565719 @default.
- W4387477314 cites W2051224630 @default.
- W4387477314 cites W2075863084 @default.
- W4387477314 cites W2081379617 @default.
- W4387477314 cites W2131673530 @default.
- W4387477314 cites W2133098435 @default.
- W4387477314 cites W2136023023 @default.
- W4387477314 cites W2234763457 @default.
- W4387477314 cites W2296250660 @default.
- W4387477314 cites W2321679546 @default.
- W4387477314 cites W2331012526 @default.
- W4387477314 cites W2512238070 @default.
- W4387477314 cites W2536542975 @default.
- W4387477314 cites W2541942748 @default.
- W4387477314 cites W2559048697 @default.
- W4387477314 cites W2748740248 @default.
- W4387477314 cites W2755179016 @default.
- W4387477314 cites W2785512376 @default.
- W4387477314 cites W2803629276 @default.
- W4387477314 cites W2891113010 @default.
- W4387477314 cites W2897938251 @default.
- W4387477314 cites W2902524486 @default.
- W4387477314 cites W2903408047 @default.
- W4387477314 cites W2924110401 @default.
- W4387477314 cites W2948541941 @default.
- W4387477314 cites W2966250553 @default.
- W4387477314 cites W3023864101 @default.
- W4387477314 cites W3046897426 @default.
- W4387477314 cites W4256166289 @default.
- W4387477314 cites W4294141750 @default.
- W4387477314 doi "https://doi.org/10.1007/s10586-023-04151-2" @default.
- W4387477314 hasPublicationYear "2023" @default.
- W4387477314 type Work @default.
- W4387477314 citedByCount "0" @default.
- W4387477314 crossrefType "journal-article" @default.
- W4387477314 hasAuthorship W4387477314A5021916094 @default.
- W4387477314 hasAuthorship W4387477314A5047338721 @default.
- W4387477314 hasAuthorship W4387477314A5048793835 @default.
- W4387477314 hasAuthorship W4387477314A5077098801 @default.
- W4387477314 hasAuthorship W4387477314A5081325239 @default.
- W4387477314 hasBestOaLocation W43874773141 @default.
- W4387477314 hasConcept C119599485 @default.
- W4387477314 hasConcept C119857082 @default.
- W4387477314 hasConcept C121332964 @default.
- W4387477314 hasConcept C127413603 @default.
- W4387477314 hasConcept C163258240 @default.
- W4387477314 hasConcept C18903297 @default.
- W4387477314 hasConcept C199360897 @default.
- W4387477314 hasConcept C2742236 @default.
- W4387477314 hasConcept C2777904410 @default.
- W4387477314 hasConcept C2780165032 @default.
- W4387477314 hasConcept C41008148 @default.
- W4387477314 hasConcept C62520636 @default.
- W4387477314 hasConcept C68781425 @default.
- W4387477314 hasConcept C73555534 @default.
- W4387477314 hasConcept C86803240 @default.
- W4387477314 hasConceptScore W4387477314C119599485 @default.
- W4387477314 hasConceptScore W4387477314C119857082 @default.
- W4387477314 hasConceptScore W4387477314C121332964 @default.
- W4387477314 hasConceptScore W4387477314C127413603 @default.
- W4387477314 hasConceptScore W4387477314C163258240 @default.
- W4387477314 hasConceptScore W4387477314C18903297 @default.
- W4387477314 hasConceptScore W4387477314C199360897 @default.
- W4387477314 hasConceptScore W4387477314C2742236 @default.
- W4387477314 hasConceptScore W4387477314C2777904410 @default.
- W4387477314 hasConceptScore W4387477314C2780165032 @default.
- W4387477314 hasConceptScore W4387477314C41008148 @default.
- W4387477314 hasConceptScore W4387477314C62520636 @default.
- W4387477314 hasConceptScore W4387477314C68781425 @default.
- W4387477314 hasConceptScore W4387477314C73555534 @default.
- W4387477314 hasConceptScore W4387477314C86803240 @default.
- W4387477314 hasFunder F4320315877 @default.
- W4387477314 hasFunder F4320322930 @default.
- W4387477314 hasFunder F4320335598 @default.
- W4387477314 hasLocation W43874773141 @default.
- W4387477314 hasOpenAccess W4387477314 @default.
- W4387477314 hasPrimaryLocation W43874773141 @default.
- W4387477314 hasRelatedWork W1534720161 @default.
- W4387477314 hasRelatedWork W1915823365 @default.
- W4387477314 hasRelatedWork W2083665254 @default.
- W4387477314 hasRelatedWork W2132641928 @default.
- W4387477314 hasRelatedWork W2393816671 @default.
- W4387477314 hasRelatedWork W2804364458 @default.
- W4387477314 hasRelatedWork W2804957450 @default.
- W4387477314 hasRelatedWork W2942177010 @default.