Matches in SemOpenAlex for { <https://semopenalex.org/work/W4387479670> ?p ?o ?g. }
- W4387479670 endingPage "105349" @default.
- W4387479670 startingPage "105349" @default.
- W4387479670 abstract "Deep learning (DL) has found extensive application in elastic metamaterial design. However, these methods are often limited to fixed design parameters and single structural configuration, lacking versatility. To overcome these, we propose a novel data-driven design framework combining deep convolutional neural network (DCNN) and genetic algorithm (GA) to design vibration-isolating metamaterial structures in foundations. This framework is highly adaptable, accommodating diverse design parameters by identical models. We discretize different structural configurations into a uniform tensor format, and generate multiple datasets. Two DCNN-based forward prediction models are then developed to accurately capture bandgap distributions for all body waves. Additionally, we incorporate multiple populations to enhance the parallel search capacity of GA, and integrate it with the trained DCNN models to simultaneously determine multiple optimal structures. The optimal design result for different parameters shows that the designed structures can achieve the target bandgap, and proves the effectiveness and generality of our method. Finally, through the design of two structural configurations, we find that four-layer structure exhibits wider low-frequency bandgaps and superior vibration reduction performance compared to the three-layer structure, under the same material composition and usage." @default.
- W4387479670 created "2023-10-11" @default.
- W4387479670 creator A5036990508 @default.
- W4387479670 creator A5065242025 @default.
- W4387479670 creator A5079137368 @default.
- W4387479670 creator A5082420358 @default.
- W4387479670 creator A5086609429 @default.
- W4387479670 date "2023-11-01" @default.
- W4387479670 modified "2023-10-16" @default.
- W4387479670 title "Optimal design of one-dimensional elastic metamaterials through deep convolutional neural network and genetic algorithm" @default.
- W4387479670 cites W1991720451 @default.
- W4387479670 cites W2040701462 @default.
- W4387479670 cites W2046598747 @default.
- W4387479670 cites W2070021863 @default.
- W4387479670 cites W2088676195 @default.
- W4387479670 cites W2101250004 @default.
- W4387479670 cites W2141377530 @default.
- W4387479670 cites W2194775991 @default.
- W4387479670 cites W2461058666 @default.
- W4387479670 cites W2499695989 @default.
- W4387479670 cites W2751990288 @default.
- W4387479670 cites W2766162919 @default.
- W4387479670 cites W2790297548 @default.
- W4387479670 cites W2803281408 @default.
- W4387479670 cites W2895758692 @default.
- W4387479670 cites W2908848055 @default.
- W4387479670 cites W2963545397 @default.
- W4387479670 cites W2964763564 @default.
- W4387479670 cites W2969549175 @default.
- W4387479670 cites W2991294993 @default.
- W4387479670 cites W2991322414 @default.
- W4387479670 cites W3008234885 @default.
- W4387479670 cites W3108349519 @default.
- W4387479670 cites W3151335129 @default.
- W4387479670 cites W3169517983 @default.
- W4387479670 cites W3188204083 @default.
- W4387479670 cites W3208802808 @default.
- W4387479670 cites W3209740170 @default.
- W4387479670 cites W4220893005 @default.
- W4387479670 cites W4281933896 @default.
- W4387479670 cites W4328051074 @default.
- W4387479670 doi "https://doi.org/10.1016/j.istruc.2023.105349" @default.
- W4387479670 hasPublicationYear "2023" @default.
- W4387479670 type Work @default.
- W4387479670 citedByCount "0" @default.
- W4387479670 crossrefType "journal-article" @default.
- W4387479670 hasAuthorship W4387479670A5036990508 @default.
- W4387479670 hasAuthorship W4387479670A5065242025 @default.
- W4387479670 hasAuthorship W4387479670A5079137368 @default.
- W4387479670 hasAuthorship W4387479670A5082420358 @default.
- W4387479670 hasAuthorship W4387479670A5086609429 @default.
- W4387479670 hasConcept C110367647 @default.
- W4387479670 hasConcept C111335779 @default.
- W4387479670 hasConcept C11413529 @default.
- W4387479670 hasConcept C119857082 @default.
- W4387479670 hasConcept C121332964 @default.
- W4387479670 hasConcept C134306372 @default.
- W4387479670 hasConcept C154945302 @default.
- W4387479670 hasConcept C155281189 @default.
- W4387479670 hasConcept C15744967 @default.
- W4387479670 hasConcept C186394612 @default.
- W4387479670 hasConcept C192562407 @default.
- W4387479670 hasConcept C198394728 @default.
- W4387479670 hasConcept C24890656 @default.
- W4387479670 hasConcept C2524010 @default.
- W4387479670 hasConcept C2780767217 @default.
- W4387479670 hasConcept C33923547 @default.
- W4387479670 hasConcept C41008148 @default.
- W4387479670 hasConcept C49040817 @default.
- W4387479670 hasConcept C50644808 @default.
- W4387479670 hasConcept C542102704 @default.
- W4387479670 hasConcept C73000952 @default.
- W4387479670 hasConcept C81363708 @default.
- W4387479670 hasConcept C8880873 @default.
- W4387479670 hasConceptScore W4387479670C110367647 @default.
- W4387479670 hasConceptScore W4387479670C111335779 @default.
- W4387479670 hasConceptScore W4387479670C11413529 @default.
- W4387479670 hasConceptScore W4387479670C119857082 @default.
- W4387479670 hasConceptScore W4387479670C121332964 @default.
- W4387479670 hasConceptScore W4387479670C134306372 @default.
- W4387479670 hasConceptScore W4387479670C154945302 @default.
- W4387479670 hasConceptScore W4387479670C155281189 @default.
- W4387479670 hasConceptScore W4387479670C15744967 @default.
- W4387479670 hasConceptScore W4387479670C186394612 @default.
- W4387479670 hasConceptScore W4387479670C192562407 @default.
- W4387479670 hasConceptScore W4387479670C198394728 @default.
- W4387479670 hasConceptScore W4387479670C24890656 @default.
- W4387479670 hasConceptScore W4387479670C2524010 @default.
- W4387479670 hasConceptScore W4387479670C2780767217 @default.
- W4387479670 hasConceptScore W4387479670C33923547 @default.
- W4387479670 hasConceptScore W4387479670C41008148 @default.
- W4387479670 hasConceptScore W4387479670C49040817 @default.
- W4387479670 hasConceptScore W4387479670C50644808 @default.
- W4387479670 hasConceptScore W4387479670C542102704 @default.
- W4387479670 hasConceptScore W4387479670C73000952 @default.
- W4387479670 hasConceptScore W4387479670C81363708 @default.
- W4387479670 hasConceptScore W4387479670C8880873 @default.
- W4387479670 hasLocation W43874796701 @default.