Matches in SemOpenAlex for { <https://semopenalex.org/work/W4387479675> ?p ?o ?g. }
- W4387479675 endingPage "109667" @default.
- W4387479675 startingPage "109667" @default.
- W4387479675 abstract "Speech emotion recognition (SER) is still a challenging research area in human–computer interaction-based systems. This paper proposed a nonlinear feature extraction technique to improve the classification performance of the SER system. The proposed method explores variational mode decomposition (VMD) with the Teager-Kaiser energy operator (TKEO) for the SER. First, VMD decomposes a speech signal into modes, and then the nonlinear TKEO operator is applied to each mode to obtain a time series. The VMD-TKEO preprocessed signal is used to extract the global features based on Energy, Pitch frequency and Mel frequency cepstral coefficients. The features are statistically examined using the Kruskal-Wallis test. The resultant feature set is examined over the support vector machine and its variants for emotion classification. The Ryerson Audio-Visual database is used for the experiment, and different emotion classification problems are formulated. Finally, the accuracy of the proposed SER architecture is quantitatively analyzed, which outperforms the other existing architectures." @default.
- W4387479675 created "2023-10-11" @default.
- W4387479675 creator A5013895400 @default.
- W4387479675 creator A5074277582 @default.
- W4387479675 date "2023-11-01" @default.
- W4387479675 modified "2023-10-16" @default.
- W4387479675 title "A nonlinear feature extraction approach for speech emotion recognition using VMD and TKEO" @default.
- W4387479675 cites W1923358586 @default.
- W4387479675 cites W1971444346 @default.
- W4387479675 cites W1976725440 @default.
- W4387479675 cites W1999016813 @default.
- W4387479675 cites W2000982976 @default.
- W4387479675 cites W2061068689 @default.
- W4387479675 cites W2100384625 @default.
- W4387479675 cites W2102953093 @default.
- W4387479675 cites W2114537326 @default.
- W4387479675 cites W2137639365 @default.
- W4387479675 cites W2157000920 @default.
- W4387479675 cites W2333674338 @default.
- W4387479675 cites W2400814905 @default.
- W4387479675 cites W2524481343 @default.
- W4387479675 cites W2767385682 @default.
- W4387479675 cites W2793383796 @default.
- W4387479675 cites W2803193013 @default.
- W4387479675 cites W2890226609 @default.
- W4387479675 cites W2890911767 @default.
- W4387479675 cites W2892870261 @default.
- W4387479675 cites W2899156568 @default.
- W4387479675 cites W2902877680 @default.
- W4387479675 cites W2949449669 @default.
- W4387479675 cites W2964370293 @default.
- W4387479675 cites W2972273766 @default.
- W4387479675 cites W2972811324 @default.
- W4387479675 cites W2974743569 @default.
- W4387479675 cites W2996637812 @default.
- W4387479675 cites W3039027785 @default.
- W4387479675 cites W3045275961 @default.
- W4387479675 cites W3045814128 @default.
- W4387479675 cites W3092468857 @default.
- W4387479675 cites W3130865720 @default.
- W4387479675 cites W3134281761 @default.
- W4387479675 cites W3173313979 @default.
- W4387479675 cites W3203321563 @default.
- W4387479675 cites W4302311181 @default.
- W4387479675 doi "https://doi.org/10.1016/j.apacoust.2023.109667" @default.
- W4387479675 hasPublicationYear "2023" @default.
- W4387479675 type Work @default.
- W4387479675 citedByCount "0" @default.
- W4387479675 crossrefType "journal-article" @default.
- W4387479675 hasAuthorship W4387479675A5013895400 @default.
- W4387479675 hasAuthorship W4387479675A5074277582 @default.
- W4387479675 hasConcept C104317684 @default.
- W4387479675 hasConcept C105795698 @default.
- W4387479675 hasConcept C111919701 @default.
- W4387479675 hasConcept C121332964 @default.
- W4387479675 hasConcept C12267149 @default.
- W4387479675 hasConcept C138885662 @default.
- W4387479675 hasConcept C151989614 @default.
- W4387479675 hasConcept C153180895 @default.
- W4387479675 hasConcept C154945302 @default.
- W4387479675 hasConcept C158448853 @default.
- W4387479675 hasConcept C158622935 @default.
- W4387479675 hasConcept C17020691 @default.
- W4387479675 hasConcept C177264268 @default.
- W4387479675 hasConcept C185592680 @default.
- W4387479675 hasConcept C186370098 @default.
- W4387479675 hasConcept C19579662 @default.
- W4387479675 hasConcept C199360897 @default.
- W4387479675 hasConcept C2776401178 @default.
- W4387479675 hasConcept C2779843651 @default.
- W4387479675 hasConcept C28490314 @default.
- W4387479675 hasConcept C33923547 @default.
- W4387479675 hasConcept C41008148 @default.
- W4387479675 hasConcept C41895202 @default.
- W4387479675 hasConcept C48677424 @default.
- W4387479675 hasConcept C52622490 @default.
- W4387479675 hasConcept C55493867 @default.
- W4387479675 hasConcept C62520636 @default.
- W4387479675 hasConcept C86339819 @default.
- W4387479675 hasConceptScore W4387479675C104317684 @default.
- W4387479675 hasConceptScore W4387479675C105795698 @default.
- W4387479675 hasConceptScore W4387479675C111919701 @default.
- W4387479675 hasConceptScore W4387479675C121332964 @default.
- W4387479675 hasConceptScore W4387479675C12267149 @default.
- W4387479675 hasConceptScore W4387479675C138885662 @default.
- W4387479675 hasConceptScore W4387479675C151989614 @default.
- W4387479675 hasConceptScore W4387479675C153180895 @default.
- W4387479675 hasConceptScore W4387479675C154945302 @default.
- W4387479675 hasConceptScore W4387479675C158448853 @default.
- W4387479675 hasConceptScore W4387479675C158622935 @default.
- W4387479675 hasConceptScore W4387479675C17020691 @default.
- W4387479675 hasConceptScore W4387479675C177264268 @default.
- W4387479675 hasConceptScore W4387479675C185592680 @default.
- W4387479675 hasConceptScore W4387479675C186370098 @default.
- W4387479675 hasConceptScore W4387479675C19579662 @default.
- W4387479675 hasConceptScore W4387479675C199360897 @default.
- W4387479675 hasConceptScore W4387479675C2776401178 @default.
- W4387479675 hasConceptScore W4387479675C2779843651 @default.