Matches in SemOpenAlex for { <https://semopenalex.org/work/W4387485720> ?p ?o ?g. }
Showing items 1 to 96 of
96
with 100 items per page.
- W4387485720 abstract "Artificial Intelligence has been working to meet the needs of humans for a very long time. There have been many progressive evolutions along the way. Neural Networks have emerged to be the best in the field of recognition and data analysis. There have been myriad developments and preparation of models over decades. There is CNN, RNN, FNN, DNN, TCN and many more. In this paper, we aim to compare the working of TCN which stands for Temporal Convolutional Network with the workings of above-mentioned models to figure out the best use of technology for catering the human needs. This paper is a deep analysis of the erstwhile models that are being used and how the temporal convolutional network finds its applications in the present scenario, what are the emerging fields that it can be implemented in and what were the positives of TCN over other neural network models. Through a careful study we have come to a conclusion that TCN could be the basic starting point of all the neural networks as it has proven to have less training time, less memory utilization and gives better results compared to other models. The functioning of TCN models is designed in such a way that no information can be drained from future to the past. Furthermore, the input image can be analyzed irrespective of the length as the same can be mapped to the output layer. TCN finds its application in various multilateral domains that includes healthcare, sequential forecasting, preventing cyber attacks, speech enhancement and many more. It has the capability to outperform the other models most of the time by a major difference and sometimes by a significant margin. Therefore, the applications of TCN can vary in accordance to the needs of the user." @default.
- W4387485720 created "2023-10-11" @default.
- W4387485720 creator A5012483124 @default.
- W4387485720 creator A5023443228 @default.
- W4387485720 creator A5039235003 @default.
- W4387485720 creator A5039495110 @default.
- W4387485720 creator A5054682939 @default.
- W4387485720 creator A5093034070 @default.
- W4387485720 date "2023-08-25" @default.
- W4387485720 modified "2023-10-16" @default.
- W4387485720 title "Temporal Convolutional Network and its Application in Various Sectors" @default.
- W4387485720 cites W1967444754 @default.
- W4387485720 cites W1967514707 @default.
- W4387485720 cites W2040371418 @default.
- W4387485720 cites W2044186388 @default.
- W4387485720 cites W2044893557 @default.
- W4387485720 cites W2045420802 @default.
- W4387485720 cites W2049952439 @default.
- W4387485720 cites W2064675550 @default.
- W4387485720 cites W2069681747 @default.
- W4387485720 cites W2078528584 @default.
- W4387485720 cites W2128554449 @default.
- W4387485720 cites W2135604164 @default.
- W4387485720 cites W2146479416 @default.
- W4387485720 cites W2168379380 @default.
- W4387485720 cites W2174066569 @default.
- W4387485720 cites W2194775991 @default.
- W4387485720 cites W2539221552 @default.
- W4387485720 cites W2550143307 @default.
- W4387485720 cites W2660965249 @default.
- W4387485720 cites W2678916739 @default.
- W4387485720 cites W2743680082 @default.
- W4387485720 cites W2807831972 @default.
- W4387485720 cites W2922525752 @default.
- W4387485720 cites W2941906448 @default.
- W4387485720 cites W2981648661 @default.
- W4387485720 cites W2998906013 @default.
- W4387485720 cites W3014444579 @default.
- W4387485720 cites W3097817799 @default.
- W4387485720 cites W3137089355 @default.
- W4387485720 cites W3196178504 @default.
- W4387485720 cites W3214736783 @default.
- W4387485720 cites W4303644396 @default.
- W4387485720 doi "https://doi.org/10.1109/asiancon58793.2023.10270242" @default.
- W4387485720 hasPublicationYear "2023" @default.
- W4387485720 type Work @default.
- W4387485720 citedByCount "0" @default.
- W4387485720 crossrefType "proceedings-article" @default.
- W4387485720 hasAuthorship W4387485720A5012483124 @default.
- W4387485720 hasAuthorship W4387485720A5023443228 @default.
- W4387485720 hasAuthorship W4387485720A5039235003 @default.
- W4387485720 hasAuthorship W4387485720A5039495110 @default.
- W4387485720 hasAuthorship W4387485720A5054682939 @default.
- W4387485720 hasAuthorship W4387485720A5093034070 @default.
- W4387485720 hasConcept C108583219 @default.
- W4387485720 hasConcept C119857082 @default.
- W4387485720 hasConcept C147168706 @default.
- W4387485720 hasConcept C154945302 @default.
- W4387485720 hasConcept C202444582 @default.
- W4387485720 hasConcept C2524010 @default.
- W4387485720 hasConcept C28719098 @default.
- W4387485720 hasConcept C33923547 @default.
- W4387485720 hasConcept C41008148 @default.
- W4387485720 hasConcept C50644808 @default.
- W4387485720 hasConcept C64869954 @default.
- W4387485720 hasConcept C81363708 @default.
- W4387485720 hasConcept C9652623 @default.
- W4387485720 hasConceptScore W4387485720C108583219 @default.
- W4387485720 hasConceptScore W4387485720C119857082 @default.
- W4387485720 hasConceptScore W4387485720C147168706 @default.
- W4387485720 hasConceptScore W4387485720C154945302 @default.
- W4387485720 hasConceptScore W4387485720C202444582 @default.
- W4387485720 hasConceptScore W4387485720C2524010 @default.
- W4387485720 hasConceptScore W4387485720C28719098 @default.
- W4387485720 hasConceptScore W4387485720C33923547 @default.
- W4387485720 hasConceptScore W4387485720C41008148 @default.
- W4387485720 hasConceptScore W4387485720C50644808 @default.
- W4387485720 hasConceptScore W4387485720C64869954 @default.
- W4387485720 hasConceptScore W4387485720C81363708 @default.
- W4387485720 hasConceptScore W4387485720C9652623 @default.
- W4387485720 hasLocation W43874857201 @default.
- W4387485720 hasOpenAccess W4387485720 @default.
- W4387485720 hasPrimaryLocation W43874857201 @default.
- W4387485720 hasRelatedWork W1557094818 @default.
- W4387485720 hasRelatedWork W2953061907 @default.
- W4387485720 hasRelatedWork W3029198973 @default.
- W4387485720 hasRelatedWork W3133861977 @default.
- W4387485720 hasRelatedWork W3167935049 @default.
- W4387485720 hasRelatedWork W3193565141 @default.
- W4387485720 hasRelatedWork W4225394202 @default.
- W4387485720 hasRelatedWork W4226493464 @default.
- W4387485720 hasRelatedWork W4298287631 @default.
- W4387485720 hasRelatedWork W4312417841 @default.
- W4387485720 isParatext "false" @default.
- W4387485720 isRetracted "false" @default.
- W4387485720 workType "article" @default.