Matches in SemOpenAlex for { <https://semopenalex.org/work/W4387486258> ?p ?o ?g. }
- W4387486258 endingPage "107227" @default.
- W4387486258 startingPage "107227" @default.
- W4387486258 abstract "In order to predict the transient emission characteristics from diesel engine accurately and quickly, a novel prediction model, based on temporal convolutional networks (TCN) that incorporates the dilated convolutions and residual connections, was presented in the paper. Firstly, 1800 samples from the World Harmonized Transient Cycle (WHTC) were employed to train and validate the model. A Random Forest algorithm was used to select six top important variables as inputs to reduce the data dimensionality. Then the effect of model hyperparameters on the prediction performance was discussed and the optimal hyperparameter combination was obtained by a particle swarm optimization (PSO) algorithm. The optimized TCN model showed a coefficient of determination value (R2) above 0.972 for training dataset and 0.941 for validation dataset, respectively. The root mean squared error (RMSE) and the mean absolute error (MAE) were relatively low. Finally, the measured data from World Harmonized Steady Cycle (WHSC) was used to test model, and the average R2 value of 0.936 demonstrated that TCN model has excellent robustness and generalization. Moreover, a comparative investigation between TCN model and other advanced algorithms, including BP, GBRT, XGBoost, RNN, LSTM and Transformer, was also conducted. The result showed that TCN model has not only higher accuracy, but also has less computing time. This demonstrates that it is a promising method to predict the emission characteristics of diesel engine." @default.
- W4387486258 created "2023-10-11" @default.
- W4387486258 creator A5013652689 @default.
- W4387486258 creator A5014890837 @default.
- W4387486258 creator A5021075050 @default.
- W4387486258 creator A5034738069 @default.
- W4387486258 creator A5042265316 @default.
- W4387486258 creator A5059868335 @default.
- W4387486258 creator A5076632805 @default.
- W4387486258 creator A5091260655 @default.
- W4387486258 date "2024-01-01" @default.
- W4387486258 modified "2023-10-12" @default.
- W4387486258 title "Prediction of the transient emission characteristics from diesel engine using temporal convolutional networks" @default.
- W4387486258 cites W1786686177 @default.
- W4387486258 cites W1979203698 @default.
- W4387486258 cites W1986834168 @default.
- W4387486258 cites W1996031526 @default.
- W4387486258 cites W2082519506 @default.
- W4387486258 cites W2155261478 @default.
- W4387486258 cites W2169281690 @default.
- W4387486258 cites W2177486756 @default.
- W4387486258 cites W2181164912 @default.
- W4387486258 cites W2187150571 @default.
- W4387486258 cites W2190580109 @default.
- W4387486258 cites W2526884187 @default.
- W4387486258 cites W2543580944 @default.
- W4387486258 cites W2623475667 @default.
- W4387486258 cites W2626972179 @default.
- W4387486258 cites W2728962839 @default.
- W4387486258 cites W2751826487 @default.
- W4387486258 cites W2766928316 @default.
- W4387486258 cites W2807935768 @default.
- W4387486258 cites W2909023425 @default.
- W4387486258 cites W2911964244 @default.
- W4387486258 cites W2925872868 @default.
- W4387486258 cites W2973507979 @default.
- W4387486258 cites W3012049447 @default.
- W4387486258 cites W3019433526 @default.
- W4387486258 cites W3023449395 @default.
- W4387486258 cites W3046761449 @default.
- W4387486258 cites W3108334435 @default.
- W4387486258 cites W3118271139 @default.
- W4387486258 cites W3149529366 @default.
- W4387486258 cites W3156368563 @default.
- W4387486258 cites W3159226409 @default.
- W4387486258 cites W3160835137 @default.
- W4387486258 cites W3163820086 @default.
- W4387486258 cites W3173247771 @default.
- W4387486258 cites W3184945419 @default.
- W4387486258 cites W3193568390 @default.
- W4387486258 cites W3194222729 @default.
- W4387486258 cites W3209891448 @default.
- W4387486258 cites W3211134441 @default.
- W4387486258 cites W4200057241 @default.
- W4387486258 cites W4200338184 @default.
- W4387486258 cites W4200361083 @default.
- W4387486258 cites W4206328810 @default.
- W4387486258 cites W4220997480 @default.
- W4387486258 cites W4223977474 @default.
- W4387486258 cites W4224315327 @default.
- W4387486258 cites W4284960594 @default.
- W4387486258 cites W4293223559 @default.
- W4387486258 cites W4309204341 @default.
- W4387486258 cites W4321004949 @default.
- W4387486258 doi "https://doi.org/10.1016/j.engappai.2023.107227" @default.
- W4387486258 hasPublicationYear "2024" @default.
- W4387486258 type Work @default.
- W4387486258 citedByCount "0" @default.
- W4387486258 crossrefType "journal-article" @default.
- W4387486258 hasAuthorship W4387486258A5013652689 @default.
- W4387486258 hasAuthorship W4387486258A5014890837 @default.
- W4387486258 hasAuthorship W4387486258A5021075050 @default.
- W4387486258 hasAuthorship W4387486258A5034738069 @default.
- W4387486258 hasAuthorship W4387486258A5042265316 @default.
- W4387486258 hasAuthorship W4387486258A5059868335 @default.
- W4387486258 hasAuthorship W4387486258A5076632805 @default.
- W4387486258 hasAuthorship W4387486258A5091260655 @default.
- W4387486258 hasConcept C104317684 @default.
- W4387486258 hasConcept C105795698 @default.
- W4387486258 hasConcept C11413529 @default.
- W4387486258 hasConcept C127413603 @default.
- W4387486258 hasConcept C139945424 @default.
- W4387486258 hasConcept C154945302 @default.
- W4387486258 hasConcept C155512373 @default.
- W4387486258 hasConcept C169258074 @default.
- W4387486258 hasConcept C171146098 @default.
- W4387486258 hasConcept C185592680 @default.
- W4387486258 hasConcept C2780804531 @default.
- W4387486258 hasConcept C33923547 @default.
- W4387486258 hasConcept C41008148 @default.
- W4387486258 hasConcept C55493867 @default.
- W4387486258 hasConcept C63479239 @default.
- W4387486258 hasConcept C81363708 @default.
- W4387486258 hasConcept C85617194 @default.
- W4387486258 hasConcept C8642999 @default.
- W4387486258 hasConceptScore W4387486258C104317684 @default.
- W4387486258 hasConceptScore W4387486258C105795698 @default.
- W4387486258 hasConceptScore W4387486258C11413529 @default.