Matches in SemOpenAlex for { <https://semopenalex.org/work/W4387486564> ?p ?o ?g. }
Showing items 1 to 77 of
77
with 100 items per page.
- W4387486564 abstract "Sentiment analysis is a Natural Language Processing (NLP) task that involves using machine learning techniques, particularly deep learning, to determine the sentiment or emotion expressed in a piece of text. The goal of sentiment analysis is to understand whether the text expresses a positive, negative, or neutral sentiment towards a particular subject, product, service, or topic. A deep learning technique called Sentiment and Context-Aware Hybrid Deep Neural Network (SCA-HDNN) was proposed for sentiment analysis. In SCA-HDNN, Convolutional Neural Network (CNN) was used for sentiment classification. However, CNNs require fixed-sized inputs, which can be a limitation when dealing with sequences of different lengths. So in this paper, Recurrent CNN (RCNN) is introduced for sentiment classification. The incorporation of recurrent connections in each convolutional layer of RCNN enables handling variable-length sequences. RCNNs can be more computationally efficient than CNN. The combination of CNNs and RNNs allows for parallelization and shared computations across time steps, which can speed up training and inference for sentiment analysis. This method is named as SCA-RCNN. The results from the experiment demonstrate that the suggested SCA-RCNN method achieves high levels of accuracy, precision, and recall in sentiment analysis." @default.
- W4387486564 created "2023-10-11" @default.
- W4387486564 creator A5031090651 @default.
- W4387486564 creator A5046955434 @default.
- W4387486564 creator A5067453043 @default.
- W4387486564 creator A5071982784 @default.
- W4387486564 creator A5093034148 @default.
- W4387486564 creator A5093034149 @default.
- W4387486564 date "2023-08-25" @default.
- W4387486564 modified "2023-10-17" @default.
- W4387486564 title "Sentiment and Context-Aware Recurrent Convolutional Neural Network for Sentiment Analysis" @default.
- W4387486564 cites W3004000127 @default.
- W4387486564 cites W3045669112 @default.
- W4387486564 cites W3158755204 @default.
- W4387486564 cites W3168873266 @default.
- W4387486564 cites W3176189029 @default.
- W4387486564 cites W3216423907 @default.
- W4387486564 cites W4206081398 @default.
- W4387486564 cites W4224026172 @default.
- W4387486564 cites W4302278403 @default.
- W4387486564 cites W4321072523 @default.
- W4387486564 cites W4328031341 @default.
- W4387486564 cites W4363677894 @default.
- W4387486564 cites W4366393875 @default.
- W4387486564 doi "https://doi.org/10.1109/asiancon58793.2023.10270289" @default.
- W4387486564 hasPublicationYear "2023" @default.
- W4387486564 type Work @default.
- W4387486564 citedByCount "0" @default.
- W4387486564 crossrefType "proceedings-article" @default.
- W4387486564 hasAuthorship W4387486564A5031090651 @default.
- W4387486564 hasAuthorship W4387486564A5046955434 @default.
- W4387486564 hasAuthorship W4387486564A5067453043 @default.
- W4387486564 hasAuthorship W4387486564A5071982784 @default.
- W4387486564 hasAuthorship W4387486564A5093034148 @default.
- W4387486564 hasAuthorship W4387486564A5093034149 @default.
- W4387486564 hasConcept C108583219 @default.
- W4387486564 hasConcept C119857082 @default.
- W4387486564 hasConcept C147168706 @default.
- W4387486564 hasConcept C151730666 @default.
- W4387486564 hasConcept C154945302 @default.
- W4387486564 hasConcept C204321447 @default.
- W4387486564 hasConcept C2776214188 @default.
- W4387486564 hasConcept C2779343474 @default.
- W4387486564 hasConcept C41008148 @default.
- W4387486564 hasConcept C50644808 @default.
- W4387486564 hasConcept C66402592 @default.
- W4387486564 hasConcept C81363708 @default.
- W4387486564 hasConcept C86803240 @default.
- W4387486564 hasConceptScore W4387486564C108583219 @default.
- W4387486564 hasConceptScore W4387486564C119857082 @default.
- W4387486564 hasConceptScore W4387486564C147168706 @default.
- W4387486564 hasConceptScore W4387486564C151730666 @default.
- W4387486564 hasConceptScore W4387486564C154945302 @default.
- W4387486564 hasConceptScore W4387486564C204321447 @default.
- W4387486564 hasConceptScore W4387486564C2776214188 @default.
- W4387486564 hasConceptScore W4387486564C2779343474 @default.
- W4387486564 hasConceptScore W4387486564C41008148 @default.
- W4387486564 hasConceptScore W4387486564C50644808 @default.
- W4387486564 hasConceptScore W4387486564C66402592 @default.
- W4387486564 hasConceptScore W4387486564C81363708 @default.
- W4387486564 hasConceptScore W4387486564C86803240 @default.
- W4387486564 hasLocation W43874865641 @default.
- W4387486564 hasOpenAccess W4387486564 @default.
- W4387486564 hasPrimaryLocation W43874865641 @default.
- W4387486564 hasRelatedWork W2548633793 @default.
- W4387486564 hasRelatedWork W2953061907 @default.
- W4387486564 hasRelatedWork W3029198973 @default.
- W4387486564 hasRelatedWork W3133861977 @default.
- W4387486564 hasRelatedWork W3167935049 @default.
- W4387486564 hasRelatedWork W3193565141 @default.
- W4387486564 hasRelatedWork W4225394202 @default.
- W4387486564 hasRelatedWork W4226493464 @default.
- W4387486564 hasRelatedWork W4298287631 @default.
- W4387486564 hasRelatedWork W4312417841 @default.
- W4387486564 isParatext "false" @default.
- W4387486564 isRetracted "false" @default.
- W4387486564 workType "article" @default.