Matches in SemOpenAlex for { <https://semopenalex.org/work/W4387487170> ?p ?o ?g. }
Showing items 1 to 88 of
88
with 100 items per page.
- W4387487170 abstract "Automatic Generation Control (AGC) plays a pivotal role in maintaining the delicate balance between electricity consumption and production. Our study delves into the intricacies of this system. To ensure its real-world applicability, we construct a simulation of a regional electricity grid, validated through generator-tripping experiments that closely mirror actual grid scenarios. Employing a well-established AGC control model, we scrutinize a simulation-based approach applied to a two-area thermally linked power system. Here, we propose intelligent techniques like Particle Swarm Optimization (PSO), Genetic Algorithm (GA), and Supervised Machine Learning (SML) to optimize PID controllers, with the primary objective being the swift restoration of the grid's frequency to its desired standard while minimizing undesirable undershoots and overshoots during load fluctuations. Our comparative analysis of these techniques, focusing on settling time and overshoots, highlights the superiority of PSO and GA, showcasing their effectiveness in AGC applications. This research underscores their potential for enhancing grid stability and efficiency, shedding light on areas for further development in the realm of Supervised Machine Learning." @default.
- W4387487170 created "2023-10-11" @default.
- W4387487170 creator A5002432131 @default.
- W4387487170 creator A5063289719 @default.
- W4387487170 creator A5092714538 @default.
- W4387487170 date "2023-08-25" @default.
- W4387487170 modified "2023-10-16" @default.
- W4387487170 title "Automatic Generation Control of a two-area power system using Supervised Machine Learning" @default.
- W4387487170 cites W2167657648 @default.
- W4387487170 cites W2756291343 @default.
- W4387487170 cites W2772317683 @default.
- W4387487170 cites W2897540504 @default.
- W4387487170 cites W2990061100 @default.
- W4387487170 cites W3129595664 @default.
- W4387487170 cites W3164883165 @default.
- W4387487170 cites W3178292572 @default.
- W4387487170 cites W4214718717 @default.
- W4387487170 cites W4225259916 @default.
- W4387487170 cites W4286213190 @default.
- W4387487170 cites W4293027896 @default.
- W4387487170 cites W4309066405 @default.
- W4387487170 cites W4312350524 @default.
- W4387487170 cites W4321383351 @default.
- W4387487170 cites W4361283564 @default.
- W4387487170 cites W4364295524 @default.
- W4387487170 cites W4383744707 @default.
- W4387487170 cites W4383745270 @default.
- W4387487170 cites W4383746472 @default.
- W4387487170 cites W4383747979 @default.
- W4387487170 cites W4384833838 @default.
- W4387487170 cites W4386264038 @default.
- W4387487170 cites W4386267171 @default.
- W4387487170 doi "https://doi.org/10.1109/asiancon58793.2023.10270540" @default.
- W4387487170 hasPublicationYear "2023" @default.
- W4387487170 type Work @default.
- W4387487170 citedByCount "0" @default.
- W4387487170 crossrefType "proceedings-article" @default.
- W4387487170 hasAuthorship W4387487170A5002432131 @default.
- W4387487170 hasAuthorship W4387487170A5063289719 @default.
- W4387487170 hasAuthorship W4387487170A5092714538 @default.
- W4387487170 hasConcept C112972136 @default.
- W4387487170 hasConcept C119857082 @default.
- W4387487170 hasConcept C121332964 @default.
- W4387487170 hasConcept C127413603 @default.
- W4387487170 hasConcept C133731056 @default.
- W4387487170 hasConcept C154945302 @default.
- W4387487170 hasConcept C163258240 @default.
- W4387487170 hasConcept C187691185 @default.
- W4387487170 hasConcept C2524010 @default.
- W4387487170 hasConcept C2778763806 @default.
- W4387487170 hasConcept C33923547 @default.
- W4387487170 hasConcept C41008148 @default.
- W4387487170 hasConcept C62520636 @default.
- W4387487170 hasConcept C82327864 @default.
- W4387487170 hasConcept C85617194 @default.
- W4387487170 hasConcept C89227174 @default.
- W4387487170 hasConceptScore W4387487170C112972136 @default.
- W4387487170 hasConceptScore W4387487170C119857082 @default.
- W4387487170 hasConceptScore W4387487170C121332964 @default.
- W4387487170 hasConceptScore W4387487170C127413603 @default.
- W4387487170 hasConceptScore W4387487170C133731056 @default.
- W4387487170 hasConceptScore W4387487170C154945302 @default.
- W4387487170 hasConceptScore W4387487170C163258240 @default.
- W4387487170 hasConceptScore W4387487170C187691185 @default.
- W4387487170 hasConceptScore W4387487170C2524010 @default.
- W4387487170 hasConceptScore W4387487170C2778763806 @default.
- W4387487170 hasConceptScore W4387487170C33923547 @default.
- W4387487170 hasConceptScore W4387487170C41008148 @default.
- W4387487170 hasConceptScore W4387487170C62520636 @default.
- W4387487170 hasConceptScore W4387487170C82327864 @default.
- W4387487170 hasConceptScore W4387487170C85617194 @default.
- W4387487170 hasConceptScore W4387487170C89227174 @default.
- W4387487170 hasLocation W43874871701 @default.
- W4387487170 hasOpenAccess W4387487170 @default.
- W4387487170 hasPrimaryLocation W43874871701 @default.
- W4387487170 hasRelatedWork W1627810955 @default.
- W4387487170 hasRelatedWork W1977050770 @default.
- W4387487170 hasRelatedWork W2009491661 @default.
- W4387487170 hasRelatedWork W2037148479 @default.
- W4387487170 hasRelatedWork W2131021041 @default.
- W4387487170 hasRelatedWork W2158010812 @default.
- W4387487170 hasRelatedWork W2328969212 @default.
- W4387487170 hasRelatedWork W2355075851 @default.
- W4387487170 hasRelatedWork W1895825885 @default.
- W4387487170 hasRelatedWork W2244943682 @default.
- W4387487170 isParatext "false" @default.
- W4387487170 isRetracted "false" @default.
- W4387487170 workType "article" @default.