Matches in SemOpenAlex for { <https://semopenalex.org/work/W4387487352> ?p ?o ?g. }
- W4387487352 abstract "ABSTRACT Imaging and characterizing the dynamics of cellular adhesion in blood samples is of fundamental importance in understanding biological function. In vitro microscopy methods are widely used for this task, but typically require diluting the blood with a buffer to allow for transmission of light. However whole blood provides crucial mechanical and chemical signaling cues that influence adhesion dynamics, which means that conventional approaches lack the full physiological complexity of living microvasculature. We propose to overcome this challenge by a new in vitro imaging method which we call motion blur microscopy (MBM). By decreasing the source light intensity and increasing the integration time during imaging, flowing cells are blurred, allowing us to identify adhered cells. Combined with an automated analysis using machine learning, we can for the first time reliably image cell interactions in microfluidic channels during whole blood flow. MBM provides a low cost, easy to implement alternative to intravital microscopy, the in vivo approach for studying how the whole blood environment shapes adhesion dynamics. We demonstrate the method’s reproducibility and accuracy in two example systems where understanding cell interactions, adhesion, and motility is crucial—sickle red blood cells adhering to laminin, and CAR-T cells adhering to E-selectin. We illustrate the wide range of data types that can be extracted from this approach, including distributions of cell size and eccentricity, adhesion times, trajectories and velocities of adhered cells moving on a functionalized surface, as well as correlations among these different features at the single cell level. In all cases MBM allows for rapid collection and processing of large data sets, ranging from thousands to hundreds of thousands of individual adhesion events. The method is generalizable to study adhesion mechanisms in a variety of diseases, including cancer, blood disorders, thrombosis, inflammatory and autoimmune diseases, as well as providing rich datasets for theoretical modeling of adhesion dynamics." @default.
- W4387487352 created "2023-10-11" @default.
- W4387487352 creator A5019537430 @default.
- W4387487352 creator A5051732988 @default.
- W4387487352 creator A5054402072 @default.
- W4387487352 creator A5060298583 @default.
- W4387487352 creator A5066072222 @default.
- W4387487352 creator A5067557192 @default.
- W4387487352 creator A5069138991 @default.
- W4387487352 creator A5070779297 @default.
- W4387487352 date "2023-10-10" @default.
- W4387487352 modified "2023-10-15" @default.
- W4387487352 title "Motion Blur Microscopy" @default.
- W4387487352 cites W1996884976 @default.
- W4387487352 cites W2037178772 @default.
- W4387487352 cites W2052192720 @default.
- W4387487352 cites W2117539524 @default.
- W4387487352 cites W2126275439 @default.
- W4387487352 cites W2298652832 @default.
- W4387487352 cites W2318671158 @default.
- W4387487352 cites W2608091829 @default.
- W4387487352 cites W2761586559 @default.
- W4387487352 cites W2775875264 @default.
- W4387487352 cites W2781414693 @default.
- W4387487352 cites W2783096356 @default.
- W4387487352 cites W2802556055 @default.
- W4387487352 cites W2999304916 @default.
- W4387487352 cites W3012333548 @default.
- W4387487352 cites W3014866774 @default.
- W4387487352 cites W3028456166 @default.
- W4387487352 cites W3041842975 @default.
- W4387487352 cites W3092978075 @default.
- W4387487352 cites W3094621838 @default.
- W4387487352 cites W3110179097 @default.
- W4387487352 cites W3126443370 @default.
- W4387487352 cites W3127300648 @default.
- W4387487352 cites W3178406361 @default.
- W4387487352 cites W3183359162 @default.
- W4387487352 cites W3197660694 @default.
- W4387487352 cites W3211940634 @default.
- W4387487352 cites W3214944438 @default.
- W4387487352 cites W3217576660 @default.
- W4387487352 cites W4206321369 @default.
- W4387487352 cites W4210651863 @default.
- W4387487352 cites W4212909196 @default.
- W4387487352 cites W4302617681 @default.
- W4387487352 cites W4309230207 @default.
- W4387487352 cites W4313566543 @default.
- W4387487352 cites W4317356214 @default.
- W4387487352 doi "https://doi.org/10.1101/2023.10.08.561435" @default.
- W4387487352 hasPublicationYear "2023" @default.
- W4387487352 type Work @default.
- W4387487352 citedByCount "0" @default.
- W4387487352 crossrefType "posted-content" @default.
- W4387487352 hasAuthorship W4387487352A5019537430 @default.
- W4387487352 hasAuthorship W4387487352A5051732988 @default.
- W4387487352 hasAuthorship W4387487352A5054402072 @default.
- W4387487352 hasAuthorship W4387487352A5060298583 @default.
- W4387487352 hasAuthorship W4387487352A5066072222 @default.
- W4387487352 hasAuthorship W4387487352A5067557192 @default.
- W4387487352 hasAuthorship W4387487352A5069138991 @default.
- W4387487352 hasAuthorship W4387487352A5070779297 @default.
- W4387487352 hasBestOaLocation W43874873521 @default.
- W4387487352 hasConcept C120665830 @default.
- W4387487352 hasConcept C121332964 @default.
- W4387487352 hasConcept C127413603 @default.
- W4387487352 hasConcept C136229726 @default.
- W4387487352 hasConcept C147080431 @default.
- W4387487352 hasConcept C150903083 @default.
- W4387487352 hasConcept C171250308 @default.
- W4387487352 hasConcept C178790620 @default.
- W4387487352 hasConcept C185592680 @default.
- W4387487352 hasConcept C186060115 @default.
- W4387487352 hasConcept C192562407 @default.
- W4387487352 hasConcept C207001950 @default.
- W4387487352 hasConcept C2859252 @default.
- W4387487352 hasConcept C2993775838 @default.
- W4387487352 hasConcept C31972630 @default.
- W4387487352 hasConcept C41008148 @default.
- W4387487352 hasConcept C84416704 @default.
- W4387487352 hasConcept C85789140 @default.
- W4387487352 hasConcept C8673954 @default.
- W4387487352 hasConcept C86803240 @default.
- W4387487352 hasConcept C95444343 @default.
- W4387487352 hasConceptScore W4387487352C120665830 @default.
- W4387487352 hasConceptScore W4387487352C121332964 @default.
- W4387487352 hasConceptScore W4387487352C127413603 @default.
- W4387487352 hasConceptScore W4387487352C136229726 @default.
- W4387487352 hasConceptScore W4387487352C147080431 @default.
- W4387487352 hasConceptScore W4387487352C150903083 @default.
- W4387487352 hasConceptScore W4387487352C171250308 @default.
- W4387487352 hasConceptScore W4387487352C178790620 @default.
- W4387487352 hasConceptScore W4387487352C185592680 @default.
- W4387487352 hasConceptScore W4387487352C186060115 @default.
- W4387487352 hasConceptScore W4387487352C192562407 @default.
- W4387487352 hasConceptScore W4387487352C207001950 @default.
- W4387487352 hasConceptScore W4387487352C2859252 @default.
- W4387487352 hasConceptScore W4387487352C2993775838 @default.
- W4387487352 hasConceptScore W4387487352C31972630 @default.
- W4387487352 hasConceptScore W4387487352C41008148 @default.