Matches in SemOpenAlex for { <https://semopenalex.org/work/W4387487653> ?p ?o ?g. }
Showing items 1 to 55 of
55
with 100 items per page.
- W4387487653 abstract "<strong class=journal-contentHeaderColor>Abstract.</strong> Snow is a vital component of the Earth system. Yet, no snow-focused satellite remote sensing platform currently exists. In this study, we investigate how synthetic observations of snow water equivalent (SWE) representative of a synthetic aperture radar remote sensing platform could improve spatiotemporal estimates of snowpack. We use an Observation System Simulation Experiment, specifically investigating how much snow simulated using popular models and forcing data could be improved by assimilating synthetic observations of SWE. We focus this study across a 24°-by-37° domain in the Western United States and Canada, simulating snow at 250 m resolution and hourly timesteps in water-year 2019. We perform two data assimilation experiments, including: 1) a simulation excluding synthetic observations in forests where canopies obstruct remote sensing retrievals, and 2) a simulation inferring snow distribution in forested grid cells using synthetic observations from nearby canopy-free grid cells. Results found that assimilating synthetic SWE observations improved average SWE biases at peak snowpack timing in shrub, grass, crop, bare-ground, and wetland land cover types from 14 %, to within 1 %. However, forested grid cells contained a disproportionate amount of SWE volume. In forests, SWE mean absolute errors at peak snowpack were 111 mm, and average SWE biases were on the order of 150 %. Here, the data assimilation approach that estimated forest SWE using observations from the nearest canopy-free grid cells substantially improved these SWE biases (18 %) and the SWE mean absolute error (27 mm). Simulations employing data assimilation also improved estimates of the temporal evolution of both SWE and runoff, even in spring snowmelt periods when melting snow and high snow liquid water content prevented synthetic SWE retrievals. In fact, in the Upper Colorado River basin, melt-season SWE biases were improved from 63 % to within 1 %, and the Nash Sutcliffe Efficiency of runoff improved from –2.59 to 0.22. These results demonstrate the value of data assimilation and a snow-focused globally relevant remote sensing platform for improving the characterization of SWE and associated water availability." @default.
- W4387487653 created "2023-10-11" @default.
- W4387487653 creator A5011456299 @default.
- W4387487653 date "2023-10-10" @default.
- W4387487653 modified "2023-10-12" @default.
- W4387487653 title "Reply on RC2" @default.
- W4387487653 doi "https://doi.org/10.5194/egusphere-2023-1603-ac2" @default.
- W4387487653 hasPublicationYear "2023" @default.
- W4387487653 type Work @default.
- W4387487653 citedByCount "0" @default.
- W4387487653 crossrefType "peer-review" @default.
- W4387487653 hasAuthorship W4387487653A5011456299 @default.
- W4387487653 hasBestOaLocation W43874876531 @default.
- W4387487653 hasConcept C101000010 @default.
- W4387487653 hasConcept C127313418 @default.
- W4387487653 hasConcept C13280743 @default.
- W4387487653 hasConcept C153294291 @default.
- W4387487653 hasConcept C166957645 @default.
- W4387487653 hasConcept C187691185 @default.
- W4387487653 hasConcept C197046000 @default.
- W4387487653 hasConcept C205649164 @default.
- W4387487653 hasConcept C24552861 @default.
- W4387487653 hasConcept C2778877292 @default.
- W4387487653 hasConcept C39432304 @default.
- W4387487653 hasConcept C39807119 @default.
- W4387487653 hasConcept C62649853 @default.
- W4387487653 hasConceptScore W4387487653C101000010 @default.
- W4387487653 hasConceptScore W4387487653C127313418 @default.
- W4387487653 hasConceptScore W4387487653C13280743 @default.
- W4387487653 hasConceptScore W4387487653C153294291 @default.
- W4387487653 hasConceptScore W4387487653C166957645 @default.
- W4387487653 hasConceptScore W4387487653C187691185 @default.
- W4387487653 hasConceptScore W4387487653C197046000 @default.
- W4387487653 hasConceptScore W4387487653C205649164 @default.
- W4387487653 hasConceptScore W4387487653C24552861 @default.
- W4387487653 hasConceptScore W4387487653C2778877292 @default.
- W4387487653 hasConceptScore W4387487653C39432304 @default.
- W4387487653 hasConceptScore W4387487653C39807119 @default.
- W4387487653 hasConceptScore W4387487653C62649853 @default.
- W4387487653 hasLocation W43874876531 @default.
- W4387487653 hasOpenAccess W4387487653 @default.
- W4387487653 hasPrimaryLocation W43874876531 @default.
- W4387487653 hasRelatedWork W2038298935 @default.
- W4387487653 hasRelatedWork W2050853938 @default.
- W4387487653 hasRelatedWork W2110091907 @default.
- W4387487653 hasRelatedWork W2187012855 @default.
- W4387487653 hasRelatedWork W2282506930 @default.
- W4387487653 hasRelatedWork W2334725915 @default.
- W4387487653 hasRelatedWork W253341182 @default.
- W4387487653 hasRelatedWork W2763806468 @default.
- W4387487653 hasRelatedWork W2794575618 @default.
- W4387487653 hasRelatedWork W3170438605 @default.
- W4387487653 isParatext "false" @default.
- W4387487653 isRetracted "false" @default.
- W4387487653 workType "peer-review" @default.